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EXECUTIVE SUMMARY 

Achieving universal access to electricity remains a firm ambition of the 

Sustainable Development Goals. Progress toward this goal has benefited from 

the recent decline in the cost of renewable energy technologies. Because of their 

modularity, these technologies have created new opportunities to supply 

households with affordable electricity based on the use of distributed electricity 

generation. However, these new technologies have created challenges for 

electrification planning. Whereas grid expansion would previously have been 

planned for all households, now effective planning involves assessing which 

technology option (grid expansion or one of a variety of distributed generation 

sources) can provide the necessary energy services to each household at the 

lowest cost.  

To meet this challenge, a number of models have been built that aim to describe 

the appropriate technology allocation for achieving universal access to electricity 

at the lowest total cost. These models seek to account for the different capital 

and generation costs of different technologies, allowing for variability in these 

costs in both space and time. For the purposes of this report, these models have 

been termed least-cost electrification models (LCEMs).  

While LCEMs provide a new and important tool for policy makers, questions 

remain about their accuracy. Such questions are increasingly pertinent given that 

these models are built on data that is known to be poor and that computational 

challenges for the models require that they invoke significant simplifications.  

To address these questions, this report reviews the published results from 23 

different papers based on the workings of a variety of LCEMs. In so doing, this 

work seeks to understand the variability in model findings on the grounds that 

significant variability suggests challenges for accuracy. With this in mind, the 

report does the following: 

1. It summarizes the workings of the models used in different publications, 

describing their overall logic as well as how they deal with data issues and 

overcome computational challenges. The intent is to make clear both the 

dynamics shaping least-cost electrification options and to highlight potential 

sources of variance across the models.  

2. It identifies areas of work for modelers and calls for a push to generate 

comparable findings and to investigate sources of variance across models.  

3. It attempts to compare the findings of the models in order to determine the 

level of agreement across them. This is achieved by controlling for the level 

of demand assumed by the different models and by assessing the level of 
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agreement across them. The level of agreement is assessed considering the 

least-cost allocation (i) between grid and distributed technologies as well as 

(ii) between mini-grids and stand-alone systems.  

4. Given the limited claims that can be made about the accuracy of these 

models, determined by 3, it cautions against advocates using the findings of 

these models too simplistically. 

Despite the efforts made to render these results comparable, efforts at a 

systematic comparison are fraught given the multiple differences between 

models. Of particular relevance are the different technologies considered as well 

as the different geographies to which the models are applied (see Figure E1). 

Figure E1. Differences in technology and geography across studies 

 

Source: Author 

Notes: NA = not available. 

* Not included in Figure E2/5 as they did not compute LCEM for 100 percent access. 

** Not included in Figure E2/5 as they did not provide explicit results comparing grid versus distributed 

generation.  

*** Not included in Figure 4 as they calculate the grid from scratch, ignoring any existing grid network.  
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The results indicate significant variability across both models and geographies 

(see Figure E2): 

1. Across models and geographies, results range widely, showing that 

between 1 and 82 percent of the unconnected population will be 

connected most cheaply using distributed generation technologies.  

2. Within countries and regions with more than one published model 

result, ranges are also large. Results range from 4 percent to 47 

percent in Kenya, from 1 percent to 34 percent in Nigeria, and from 18 

percent to 79 percent across sub-Saharan Africa.  

3. Even within results for the same model, the range can be large 

across comparable demand scenarios. For example Van Ruijven et 

al. (2012), considering East Africa, finds that distributed technology 

allocations are cheapest for anywhere between 1 and 82 percent of 

the population, depending on the investment costs used.  

4. Further, considering the variety of results within each model (blue 

points in Figure E2), it is clear that varying demand across models 

makes a huge difference in terms of technology allocation.  
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Figure E2. Comparison results across LCEMs estimating technology 

allocation for universal electricity access 

 

Note: Published findings are grouped by the country or region modeled. Results control for demand (between 

tiers 2 and tier 4 of the World Bank Multi-Tier Framework for measuring energy access; see Table 4 in the main 

report) for details. Red dots in the figure refer to scenarios using comparable demand (between tiers 2 and 4). 

In cases with multiple red dots, more than one scenario uses the same level of demand—for example, varying 

investment costs while keeping demand constant. Blue dots represent other results from the model, accounting 

for other levels of demand. The figure ignores results from sensitivity tests. 
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Reasons for such variability stem from 

1. The variety of computational logics adopted by different models; 

2. The different ways different models address missing data; 

3. The different simplifications different models adopt in order to overcome the 

computational intensity that would be involved in determining ideal 

technology allocations; and  

4. The different technologies assessed by different models (see Figure E1). 

The different computational logics are specific to each model, and their 

differences are not easily classified. For data quality issues, the main challenges 

relate to the location of the existing grid, the locations of currently unelectrified 

households, the latent demand among currently unelectrified households, and 

the capital costs of energy infrastructure. Regarding computational complexity, 

differences relate to how models optimize the length of the grid network, how 

they cluster households into settlements that can be connected by larger pieces 

of infrastructure, and whether and how they address the dynamic manner in 

which (1) extending the grid results in subsequently reduced costs for further grid 

extension, and (2) connecting households to the grid changes the subsequent 

cost-reflective grid tariff.  

Variable model results also suggest that the individual countries that have been 

modeled are not representative of the larger regions of which they are a part. For 

example, published findings on Burkina Faso, Ethiopia, Ghana, Kenya, Nigeria, 

Senegal, and South Africa—which present 15 possible model results—all 

suggest that less than 50 percent of new connections would come from 

distributed technologies, while for the sub-Saharan African region just under half 

of the comparable results (3 out of 7) predict that more than 50 percent of the 

population would be most cheaply connected by distributed technologies. This is 

not an impossible outcome: the individual countries modeled here account for 

only about 30 percent of the currently unelectrified population. That said, if the 

models are accurate, they show that the countries selected for modeling 

represent exceptional cases. Finally, across the models, findings on the role of 

stand-alone versus mini-grid generation systems (though not indicated in Figures 

E1 and E2) are confounding: 

1. Models built for specific sub-Saharan African countries tend to indicate a 

larger role for mini-grids than for stand-alone systems. 

2. Models built for the sub-Saharan African region indicate a larger role for 

stand-alone systems than for mini-grids. 
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3. Models built for the global level, which use a similar modeling approach to the 

models used for the regional assessment, indicate a larger role for mini-grids 

than for stand-alone systems.  

It is possible to explain these findings on the grounds that the smaller 

geographies are not indicative of the larger regions they constitute. This 

explanation is contradicted, however, by what the models might be expected to 

predict in terms of the on-grid, off-grid split. Moreover, differences of this sort 

should raise concerns given that country models are generally based on better 

data than regional and global models.  

Such variability notwithstanding, the findings across models suggest agreement 

on the following:  

1. For large geographical areas (even if not for the majority of the population), 

distributed generation technologies will be cheapest. 

2. There will be little role for micro-hydro in achieving universal access to 

electricity even though micro-hydro can generate electricity at relatively low 

prices compared with other distributed systems.  

This analysis, it should be noted, suffers from significant limitations. First, 

different models use different parameters, making easy comparison impossible. 

Second, the number of models considering the same geographic region is small, 

so samples for comparison are small. Given that this was an effort to consider all 

known published results of LCEMs, the large variance in findings across both 

models and geographies suggests that policy makers and advocates should 

exercise significant caution when citing the findings of different models as 

the basis for planning or investment. When advocating for specific policies, 

policy makers and advocates should seek to identify multiple models and avoid 

citing models that do not publish their methods. A particularly salient case of this 

is the IEA model, which is widely cited and publishes only a limited account of its 

method.  

When advocating at the regional level, policy makers and advocates should seek 

to identify exactly which countries are being included in models in order to 

account for high levels of variability across countries. Overall, rather than using 

models to advocate for the split between grid extension and distributed 

generation, it would be more productive to use them to inform the geographic 

regions where particular technologies will be most competitive. There appears to 

be far more agreement across models regarding broad geographic trends than 

there is regarding the proportion of the population that should be connected to 

which technology. 

For modelers, the high levels of variability across models suggest that there is 

value in devoting greater effort to testing the impact of different modeling logics, 
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algorithms, and data sets in order to determine their impact on variability. 

Regarding the geographic variability of results, while there is certainly value in 

models using country-specific parameters (which are likely to provide greater 

accuracy), there would be additional value in including a generic set of 

parameters that allow for comparison across models. Fundamentally, models 

should seek to ensure that their parameters and logics are published and are 

open access, so that sources of variance across models can be identified. 
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INTRODUCTION  

The goal of achieving universal access to electricity has received increasing 

attention in recent years. Historically, this process has relied on grid expansion 

for which planning processes are well established: incrementally extend the grid 

on a least-cost basis, prioritizing areas that are cheapest to connect and likely to 

generate the largest revenues for the utility. While this approach has been 

successful in electrifying most of the world to date, it is a slow, capital-intensive 

process in which, in the aggregate, those households that are wealthiest and 

closest to existing infrastructure get connected first, while the poorest and most 

remote populations are connected last.  

With the advent of cheap, modular renewables (see Figure 1), there is increasing 

scope to provide access to electricity through distributed generation sources, 

which, rather than generating power centrally and distributing it through the grid, 

generate power much closer to the site where it will be consumed. Such systems 

include mini-grids and stand-alone systems; while these vary in size, they are 

distinguished by the fact that they are not connected to the national grid. While 

these technologies have created new momentum around electrification, with the 

potential to connect poor remote populations more quickly and with fewer capital 

risks, they have also raised new challenges for planning. Such technology 

choices force the questions: which households should be connected to the grid, 

which households should be connected to distributed systems, and what scale of 

resources should actors concerned with universal electricity access be devoting 

to each technology? 
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Figure 1. Declining costs of renewables 

 

Source: Open EI (2018). 

 

Answering these questions is not a straightforward task. While there is general 

agreement that a least-cost approach should be pursued,1 the determinants of 

the cost of electrification for any household differ by technology, and the inputs 

for determining the cost of any technology vary in both space and time. Given 

that about 200 million households globally currently lack access to electricity,2 the 

computational challenges of determining the least-cost technology allocation for 

achieving universal energy access are substantial. All of these challenges are 

made significantly more difficult when one considers that data are either poor or 

nonexistent for many of the parameters necessary for undertaking a least-cost 

assessment.  

Despite the challenges involved in such an assessment, a number of authors and 

institutes have built models to estimate the technology allocation that would 

achieve universal access to electricity at the lowest cost. For the purpose of this 

                                                
1 Although this is true as a general statement, the speed with which distributed technologies can be deployed, as well as the 

potential role for the private sector to get around problems of financially unsustainable utilities, should not be 

underestimated.  

2 This figure is calculated using the IEA number of 1.06 billion individuals and assuming five people per household (IEA 2017a). 
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study, these models are called least-cost electrification models (LCEMs). LCEMs 

take advantage of newly available remotely sensed data in order to address data 

constraints and are anticipated to be particularly useful to policy makers because 

their findings can be visualized spatially and therefore effectively communicated 

(Szabó et al. 2011; Szabó et al. 2013; Mentis et al. 2015, 2016).  

Notably, findings from these models have been picked up by both policy makers 

and advocates. In some cases national governments have collaborated in the 

development of models (Modi et al. 2013; Moner-Girona et al. 2016), while in 

other cases governments have contacted the academic institutions building these 

models, seeking to incorporate their findings into policy making (M. Moner-

Girona, personal communication, January 15, 2019). At the same time, energy 

access advocates have picked up on model results that show a large role for 

distributed generation technologies as the least-cost means for achieving 

universal energy access—most notably the findings of the IEA’s modeling efforts 

(Sierra Club and Oil Change International 2014).  

Considering the apparent influence of LCEMs on both policy and advocacy, it is 

useful to take a closer look at their accuracy. This report assesses 23 different 

published results from a variety of LCEMs and compares their findings.3 The aim 

of this review is to assess the level of variability that exists across both 

geographies and models (where the same geography has been modeled using 

multiple LCEMs). In doing so, the report intends to describe the levels of 

agreement that exist across published model results as well as the extent to 

which model findings are generalizable across geographies. Further, by exploring 

and describing the specific computational logic of different models, the report 

aims to increase understanding among policy makers and advocates regarding 

the determinants of least-cost technology allocation when pursuing electrification.  

It should be noted that this report compares published model findings, but it does 

not compare the actual models or the possibilities for running them with different 

parameters. The latter task was beyond the scope of this review, in part because 

not all researchers publish the manual and/or source code for their models. 

Potential modelers looking to improve upon the functioning of specific models will 

have to consult these documents in greater detail in order to advance this field.  

The report finds that there is currently limited ability to compare model findings 

across contexts and thus limited scope to assess the accuracy of different 

models. To the extent that we can undertake a comparison across models, the 

results reveal significant variability, both across models and across geographies. 

Such conclusions suggest important caveats for policy makers and advocates 

                                                
3 These publications were identified by internet searches of the literature, subsequent snowballing of references, and interviews 

with authors of LCEMs. It is possible that this review missed other existing models and publications, but because of the 

relatively small nature of the modeling community—which is often clustered in research centers with a specific focus on this 

issue—the number of missed publications is expected to be small. The obvious exception to this, of course, consists of 

unpublished modeling exercises carried out by governments and consultancies.  
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seeking to use the outputs of models. Further, there appears to be valuable work 

to be done by modelers to quantify the sources of variability across models and 

to develop better uniform proxies and computational logics so as to generate 

more accurate, and therefore more useful, models to support policy makers and 

advocates. The report and its findings contribute to the existing literature as the 

first review that compares model findings and explicitly discusses the contrasting 

computational logics to try to explain model variability. Although other reviews of 

the literature do exist, they focus on classifying the broad types of energy 

planning literature (Trotter, McManus, and Maconachie 2017), identifying what 

different models are capable of incorporating (Cader, Blechinger, and Bertheau 

2016), or describing the extent to which they integrate concerns related to 

achieving SDG 7 (on energy) (Moner‐Girona et al. 2018). Notably, none of these 

reviews seek to document and explain the variability in model results. The 

closest effort comes from a doctoral thesis that describes different modeling 

efforts but does not seek to determine the level of (dis)agreement in published 

results (Mentis 2017).4 

With this context in mind, this report begins by explaining in greater detail what 

LCEMs are and why they are necessary. It also introduces the notion of the 

levelized cost of electricity (LCOE) as applied in an energy delivery context, as 

this is the basis upon which LCEMs allocate different technologies. Next the 

report discusses the necessary inputs for calculating the LCOE, the challenges in 

attaining these data, and how different models solve these challenges. It goes on 

to discuss the computational challenges inherent in the different LCEMs and how 

these are resolved. Notably, the report is dominated by the sections on data 

inputs and computational logic because these are central to explaining potential 

sources of variability in the models. The report then analyzes the variability 

across models, and it concludes with a discussion of what such variability means 

for both policy makers and modelers. The appendix provides a detailed account 

of every published model result assessed as part of this work.   

                                                
4 The relevant discussion appears in a chapter titled “GIS and Energy Planning.” 
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MODELS: HOW AND WHY 

COPING WITH COMPLEXITY AND TRADE-OFFS 

For any household or settlement, the least-cost technology choice for 

electrification depends upon multiple factors that interact dynamically and are too 

numerous to calculate without extensive computation. This, in the most general 

terms, is why models are needed to determine the least-cost electrification 

pathway for a country or region. Moreover, because the drivers of electrification 

costs vary spatially (and to a lesser extent temporally5), models need to be 

spatially and temporally explicit, adding to the computational intensity of the task.  

There are trade-offs involved in choosing among technologies to achieve 

electrification at the lowest cost. On the one hand, whereas the grid can 

generally generate electricity at a lower unit cost ($/kilowatt-hour6) than 

distributed technologies, building out the grid to deliver that electricity to 

households is expensive. On the other hand, although distributed generation has 

high generation costs and thus higher unit costs for electricity, generation is on 

site, eliminating the need for expensive transmission infrastructure. Additionally, 

the cost of providing distributed generation is largely independent of the 

remoteness of a household.7 Thus, for households that either consume very 

small amounts of electricity or are remote from the existing grid (or both), the 

overall cost of consuming more expensive electricity from distributed sources is 

likely offset by the savings generated by not having to extend the grid. On the 

other hand, in areas where demand is high or where populations are close to the 

existing grid (or both), the high cost of grid extension is justified by the savings 

generated on every individual kWh of electricity consumed.  

The fundamental question for least-cost electrification models therefore is: what 

proportion of the population is (in)sufficiently far from the grid, of (in)sufficiently 

low density, and/or consuming a (in)sufficiently small amount of electricity to be 

connected most cheaply with (the grid or) distributed generation technologies? A 

first step in being able to estimate these costs is establishing a metric for 

comparing the costs of different electricity generation and delivery technologies.  

                                                
5 Note that the temporal dimensions of least-cost electrification are becoming more important because models need to account 

for the declining costs of renewables. Although a few models do this, most ignore this process and operate with a single 

time step (see section on computational challenges below).  

6 A kilowatt-hour (kWh) is the amount of energy produced by a generation source with a power output of 1 kW when that source 

is run for one hour. Thus a 1 kW solar panel running for one hour will produce 1 kWh of energy.  

7 The exception is distributed diesel generation. The costs of supplying diesel vary spatially, and how different models address 

this issue is discussed below. Furthermore, someone must still service these generators, so maintenance and installation 

costs likely increase in more remote areas, but these increases are much smaller than the cost of building out the grid.  
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TECHNOLOGY SELECTION USING THE LOWEST 
LEVELIZED COST OF ELECTRICITY 

Each LCEM reviewed in this report invokes a specific set of logical sequences by 

which the cheapest technology is selected (the specific logic of each model is 

discussed more fully in the Appendix). Across all of the models, however, the 

idea of the levelized cost of electricity (LCOE) is central: technologies are 

selected based on having the lowest levelized cost. LCOE is calculated by 

adding up the costs of capital, fuel, operation and maintenance (O&M), and 

salvage and dividing this amount by the total energy produced by that generator 

over its entire lifetime. A discount rate must also be applied to account for the 

fact that money spent on the generator now drives electricity consumption that 

will take place in the future. This calculation results in an LCOE expressed as a 

currency-specific cost per kilowatt-hour ($/kWh).  

Using LCOE to derive delivery costs, however, calls for a slightly different 

approach. Rather than focusing on how much energy a system can generate—

based on its capacity—the focus is on how much demand the system can meet. 

This is important for a number of reasons:  

1. In the case of intermittent, renewable generation, the system must be 

able to meet demand as it arises, and not only when the renewable 

resource is available. This results in increased capital costs in the form of 

batteries or complementary fossil fuels, and these costs need to be 

accounted for.  

2. When a system serves an increasingly diverse set of users (such as a 

whole settlement rather than a household), the peak demand placed on 

the system is less than the sum of peak demand from each user – a 

result caused by each user placing their peak demand on the system at 

slightly different times. This means that generation systems serving more 

diverse demand (i.e., more people) can have a reduced capacity and 

therefore reduced capital costs. LCOE calculations focused on meeting 

demand can show the reduced unit costs for electricity that can be 

achieved by connecting multiple households to single pieces of 

infrastructure, such as mini-grids or the grid.  

3. In the case of the grid, which can deliver large amounts of electricity (far 

more than could be feasibly used by a low-income household), a focus on 

capacity would drive the LCOE to very low levels. However, because 

households only need a specific amount of energy, it makes sense to 

consider the cost of meeting only that demand. 

Finally, in addition to focusing on demand met, in the case of the grid and mini-

grids the LCOE for delivering energy needs to include the costs of distribution 

infrastructure, and, in the latter case, transmission infrastructure—neither of 

which is necessary in the case of stand-alone systems (see box).  
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Calculating LCOEs for different technologies  

Below is a general account of how LCEMs calculate the costs of different technologies 

that commonly appear in LCEMs: stand-alone solar and diesel-based systems; wind, 

diesel, hydroelectric, and solar mini-grids; and the grid.  

Stand-Alone Systems 

Stand-alone systems refer to generation systems that supply a single consumer. 

These systems require no energy delivery infrastructure and therefore have no capital 

costs for transmission or distribution. For stand-alone diesel systems, which are 

dispatchable, this means that the LCOE calculation for energy delivery is identical to 

the LCOE calculation for the generator’s capacity. The LCOE calculation thus includes 

the capital costs of the generator, operation and maintenance (O&M) costs, and 

salvage costs, and the result is determined by the cost of fuel and the efficiency of the 

generator.  

For stand-alone solar systems the cost is determined by the capital cost of the solar 

panels and balance of system (BOS) components, as well as the O&M and salvage 

costs. Because solar is an intermittent energy source, the system also requires a 

battery. The size of the battery must be set so that the system is capable of delivering 

energy when it is needed, with an acceptable level of reliability based on an 

assessment of the solar resource potential and its temporal variability. The battery size 

must also account for issues of depth of discharge in providing such reliability, 

considering what this means for the lifespan of the battery. Of course the size of the 

solar generator must be sufficient not only to meet peak demand, but also to ensure 

that the battery remains sufficiently charged to provide reliable energy without 

discharging the battery too deeply. 

Mini-Grids  

Mini-grids refer to small clusters of energy consumers who are linked up to one or 

multiple generating sources. Although mini-grids are themselves grids, they are 

considered distributed sources because they operate independently of the national 

grid.8 Solar, diesel, and wind-based mini-grids include the same costs as stand-

alone systems, plus the cost of distribution infrastructure. This distribution cost is 

usually estimated based on the established capital, O&M, and salvage costs of low-

voltage (LV) power lines. Additionally, if the goal is to integrate solar mini-grids with the 

grid in the future, these systems need to include inverters so that the DC current they 

generate can flow into the main grid. For hydroelectric mini-grids the costs include 

generation and distribution infrastructure, as well as transmission costs of transporting 

electricity from the generator (which must be located on a suitable body of water) to 

the settlement it is intended to serve. Again, this cost is usually based on the cost of 

LV power lines; it can also include the cost of transformers, depending on the 

                                                
8 Different models use different definitions of what size grid qualifies as a mini-grid. For the purposes of this report, the 

definitions used in published studies were simply accepted. 
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generation capacity of the system and how far the settlement is from the generating 

source. Notably, generation sources on mini-grids can be combined to form hybrid 

systems. This is useful for addressing the intermittency of wind and solar systems and 

for limiting the high cost of batteries by replacing them with diesel.9  

Grid  

For the grid, costs are driven by the cost of generating electricity on the grid (or the 

cost-reflective tariff) plus the costs of transmission and distribution, including the costs 

of any transformers.  

Although all electrification systems involve costs for wiring the newly connected 

infrastructure, these costs are usually ignored in the case of LCEMs because they are 

common to all systems and thus do not affect the selection of the least-cost system.  

While the general account of LCOE as the driver of LCEMs places the focus 

firmly on demand, a number of models described in this review are able to avoid 

a focus on demand in estimating LCOE. They do this either (1) by using 

population density as a proxy for demand or (2) by assuming standard capacities 

for the generators considered in the model and then calculating the LCOE for 

those systems as they appear in the model.  

When using the first approach—population density as a proxy for demand—the 

models assume that populations located within some predetermined distance 

from the grid will be connected most cheaply by the grid, while populations 

beyond this distance will be connected most cheaply by distributed generation. 

Further, the models assume that population centers of a certain size will be most 

cheaply connected by mini-grids while centers below a certain size will be most 

cheaply connected with stand-alone systems (Bertheau, Cader, and Blechinger 

2016; Bertheau et al. 2017).  

In the second approach—assuming a standard capacity for a generator—the 

models assume a cutoff for what would be considered an acceptable LCOE. It 

then maps where different generators can meet that LCOE, based on resource 

availability and fuel costs. Like the first approach focused on population density, 

the approach using standard capacities for generators deals with grid 

connections by assuming that all households within a certain distance of the 

existing grid will be connected most cheaply by the grid (Szabó et al. 2011).  

Outside of these two simplified approaches, LCEMs generally seek to calculate 

the LCOE for each technology being assessed for each household—though 

households are usually grouped into demand nodes composed of settlements or 

                                                
9 Although diesel generators might be cheaper than batteries when fuel costs are low, relying on diesel for mini-grids raises its 

own challenges with regard to the potential instability of the diesel supply chain (Morrissey 2017). 
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grid cells of average population density (more details below). Based on the 

lowest LCOE, the models allocate a technology to each demand node. 

The exact inputs needed for producing an LCEM depend on the technologies 

being considered, and since inputs are spatially explicit, model results will differ 

by geography. Different models consider a wide variety of different generating 

technologies and geographies (see Figure 2 and Table 5). Almost all models 

consider the grid and either stand-alone or mini-grid solar photovoltaics (PV). 

Most consider the grid, solar PV, and diesel (accounting for both stand-alone 

systems and mini-grids). Some models include a large variety of generating 

sources: grid, solar PV, diesel, wind, biomass, and mini-hydro, including all 

possible renewable-diesel hybrid combinations.  

The geographic variation across models is likewise significant, including 

subnational, national, regional, and global assessments. Sub-Saharan African 

countries dominate because that region suffers from the most acute energy 

access challenges. Within this, Kenya and Nigeria dominate, along with regional 

assessments of sub-Saharan Africa. The use of different technologies and a 

variety of geographies presents a significant challenge for comparisons of 

published results.  
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Figure 2. Differences in technology and geography across studies 

 

Source: Author 

Notes: NA = not available. 

* Not included in Figure E2/5 as they did not compute LCEM for 100 percent access. 

** Not included in Figure E2/5 as they did not provide explicit results comparing grid versus distributed 

generation.  

*** Not included in Figure E2/5 as they calculate the grid from scratch, ignoring any existing grid network.  
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ESTIMATING MODEL INPUTS 

With a general understanding of how LCEMs work, it is possible to describe the 

different inputs necessary to calculate the LCOE (Figure 3). These include 

1. The geolocation of the existing grid; 

2. The geolocation of unelectrified households; 

3. The latent demand of unelectrified households; 

4. The spatial distribution of renewable energy availability; 

5. Diesel costs (possibly including an assessment of how price varies 

spatially); 

6. The cost-reflective tariff for grid electricity; and 

7. Capital, O&M, and salvage costs for generating technologies, as well as 

infrastructure for transmission (relevant for the grid) and distribution 

(relevant for the grid and mini-grid).  

Further, because most models seek to address energy demand at some point 

in the future, they need to account for factors that will change in the model 

over time. These include 

1. Population growth, which increases demand on the overall system as well 

as within any settlement; 

2. Increasing household demand, because connected households tend to 

increase their consumption over time;  

3. Future diesel prices; and 

4. Future declines in capital costs, especially as these pertain to renewable 

energy components.  
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Figure 3. Schematic showing inputs, general logic, and sources of variability within LCEMs

 
Source: Author.
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Assuming one has all of the inputs described above, the task of modeling the 

selection of the least-cost technology is largely manageable (save for some 

computational challenges, which will be discussed below). In reality, though, 

attaining data on these inputs can be challenging. In countries with low electricity 

access rates, the data needed to build an LCEM are usually not stored in a single 

database, or anywhere at all (S. Szabó et al. 2013; Mentis et al. 2015). As a 

result, LCEMs must frequently estimate input data. LCEMs have recently gained 

prominence not only owing to the reduced cost of renewable components and 

the potential for distributed generation, but also because of advances in the use 

of remotely sensed data to attain the relevant inputs. Even with these advances, 

data problems remain significant, and the different ways they are solved are a 

source of variance in the model results.  

LOCATING THE EXTENT OF THE EXISTING GRID 

The specific geolocation of existing grid infrastructure is usually determined from 

existing data sets. These data must be specified to include the different 

components of the grid, such as the voltage of particular power lines, the location 

of substations, and the capacities of transformers. For models being developed 

at the national level, it is often possible to use data held by the national utility 

(Parshall et al. 2009; Sanoh et al. 2012; Modi et al. 2013; Sahai 2013), though 

the quality of these data can vary. Otherwise two data sets dominate: (1) the 

OpenStreetMap (OSM), Infrastructure – Power Map, and (2) the Infrastructure 

Map from the African Development Bank (AfDB) from 2011.10 The AfDB map 

applies only to Africa, but given the low rates of electrification in that region, 

Africa is the focus of many LCEMs and thus this data set is commonly used.  

Despite the value provided by the OSM and AfDB data sets, it is important to 

appreciate the extent to which they are incomplete. The following quote from the 

World Bank describes the updated energy infrastructure map for the Africa 

Infrastructure Country Diagnostic, which is compiled from multiple sources, 

including OpenStreetMap and is considered the “most complete and up-to-date 

open map of Africa's electricity grid network” (Energydata.info n.d.): 

Some of the data, notably that from the AICD [Africa Infrastructure 

Country Diagnostic] and from World Bank project archives, may 

be very out of date. Where possible this has been improved with 

data from other sources, but in many cases this wasn't possible. 

This varies significantly from country to country, depending on 

data availability. Thus, many new lines may exist which aren't 

                                                
10 Future models will likely be updated to use the Africa Infrastructure Country Diagnostic map from 2017.  
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shown, and planned lines may have completely changed or 

already been constructed (Energydata.info n.d.) 

The incomplete nature of this data set creates significant problems for LCEMs. 

This is because the cost of extending the grid is extremely large (see Table 2), 

and thus the distance between an existing settlement and the grid is a core driver 

of LCOE.  

Different models seek to address this problem to different extents, principally 

through triangulation with other data sets, including interviews with national 

utilities and other agencies (Szabó et al. 2011; Szabó et al. 2013; Bertheau et al. 

2017). Triangulation is obviously easier for models being applied to smaller 

geographies, but for regional models the constraints of such poor grid data are 

significant. Nonetheless, these data gaps are often simply ignored, with many 

models relying solely on either the AfDB (Mentis et al. 2015, 2016) or OSM map 

(Van Ruijven, Schers, and van Vuuren 2012; Dagnachew et al. 2017; Zeyringer 

et al. 2015). Because errors in the grid data set are likely to fail to document the 

grid where it exists rather than showing it where it does not exist, these errors are 

likely to result in an underestimation of the extent to which grid connections are 

the cheapest technology; models will generate larger distances between the 

existing grid and unconnected households, resulting in higher transmission costs 

and therefore larger LCOE values for the grid.  

Beyond databases on grid infrastructure, models have made use of nighttime 

illumination data, which can identify electrified areas by measuring the light they 

emit into space overnight (Bertheau, Cader, and Blechinger 2016). In some 

cases this approach has been paired with the infrastructure maps as a means of 

triangulation (Mentis et al. 2017). Because this approach assumes that areas 

emitting light are connected to the grid, it estimates grid extent based on 

proximity to illuminated settlements.  

For subnational analyses a final option is to use aerial photography to identify 

electricity infrastructure (e.g., Ellman 2015). The challenge with this approach is 

that it is still able to capture only medium-voltage infrastructure rather than the 

low-voltage lines that connect households. Further, processing the aerial 

photography creates challenges that efforts at machine learning have had little 

success in resolving (Ellman 2015).  

Besides using different data sources to locate existing grid infrastructure, models 

differ in whether they consider only the existing grid (Modi et al. 2013; Zeyringer 

et al. 2015) or include planned grid construction (Szabó et al. 2013; Moner-

Girona et al. 2017; Bertheau et al. 2017; Mentis et al. 2015, 2016, 2017). 

Researchers sometimes incorporate planned grid construction directly by using 

formal plans from relevant agencies (Szabó et al. 2013; Bertheau et al. 2017; 

Moner-Girona et al. 2017) or by relying on knowledge of large mineral-rich areas 
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(derived most often from the US Geological Survey). Mining is anticipated in 

those areas, which are therefore expected to be connected to the grid in the 

future (Mentis et al. 2015, 2016, 2017).  

IDENTIFYING UNCONNECTED HOUSEHOLDS 

For most countries with low electrification rates, data sets detailing the exact 

location of unconnected households do not exist. This information must be 

inferred from other data sets.  

Most large-scale modeling efforts begin with high-resolution population density 

maps,11 which tend to take one of three forms:  

1. A geospatial grid, with average population density for each grid cell (raster 

data); 

2. A set of geolocated settlements, which present as points (i.e., they have no 

spatial extent) with information on population size for each settlement; or  

3. A combination of the above whereby the model begins with an administrative 

area and then makes assumptions about the percentage of that area that 

might be inhabited (Parshall et al. 2009). 

Data on population tends to come from the following sources:  

1. the Socioeconomic Data and Applications Center (SEDAC)12 (Moksnes et al. 

2017; Szabó et al. 2013; Van Ruijven, Schers, and van Vuuren 2012; 

Dagnachew et al. 2017; Levin and Thomas 2012); 

2. other large data sets such as Linard et al. (2012) (Mentis et al. 2016);  

3. WorldPop (Mentis et al. 2017); or  

4. census data or other local data sources (Parshall et al. 2009; Sanoh et al. 

2012; Modi et al. 2013; Kemausuor et al. 2014; Ohiare 2015; Moner-Girona 

et al. 2017; Bertheau et al. 2017; Bertheau, Cader, and Blechinger 2016; 

Ellman 2015).  

Regardless of the data set used, two approaches exist to locate the unconnected 

population. The first is to look at information on electrification rates and assume 

that all people who are electrified live in relatively close proximity to the existing 

grid. Based on this assumption, the model creates a buffer around the grid, 

expanding the size of the buffer until it contains the number of dwellings or 

people (depending on the population data set used) believed to be electrified in 

the geography being modeled (Van Ruijven, Schers, and van Vuuren 2012; 

Mentis et al. 2015, 2016; Dagnachew et al. 2017). This approach is likely to bias 

                                                
11 As with grid extent, different models undertake efforts at triangulation, or seek to address issues of missing data, to different 

extents, by combining different data sets. 

12 SEDAC is run by US National Aeronautics and Space Administration (NASA) and hosted by the Center for International 

Earth Science Information Network (CIESIN) at Columbia University. 
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the model findings toward off-grid technologies by underestimating the 

geographical extent of existing, connected households, given that grid 

connections do not radiate uniformly from the grid.  

The second approach is to use remotely sensed nighttime illumination data. This 

approach overlays population density data or settlement data onto nighttime 

illumination data to determine the number of unelectrified people/dwellings based 

on the number of people living in areas without nighttime illumination (Bertheau, 

Cader, and Blechinger 2016; Bertheau et al. 2017; Mentis et al. 2017; Moksnes 

et al. 2017). This number can then be triangulated with established statistics on 

the number of unelectrified people in a country (Moksnes et al. 2017). The use of 

nighttime illumination data is expected to generate more accurate descriptions of 

the currently unconnected population than the approach that simply draws a 

corridor around the existing grid.  

ESTIMATING DEMAND 

LCEMs tend to deal with issues of demand in three ways, each involving an 

increasing level of complexity. The first and simplest approach is to simply ignore 

demand and to drive the model using a pre-determined LCOE or using 

population density as a proxy for demand (Szabó et al. 2011; Bertheau, Cader, 

and Blechinger 2016; Bertheau et al. 2017; Moner-Girona et al. 2017). The 

approach based on a pre-determined LCOE, applied by Szabó et al. (2011), 

assesses a number of different generation sources with sufficient capacity to 

plausibly meet access requirements and examines where they might be able to 

operate at a competitive, pre-determined LCOE. This approach estimates where 

the grid will be cheapest by simply drawing a corridor around the grid and 

assuming that everyone within this corridor will be most cheaply connected to the 

grid. The output of the model is a map indicating where different technologies are 

competitive (Szabó et al. 2011; see Appendix).  

The population density approach allocates technologies by setting requirements 

for population density and distance from the grid for each technology and then 

tallying the different technologies used (Bertheau, Cader, and Blechinger 2016; 

Bertheau et al. 2017). Notably, the population density approach is based, in part, 

on other modeling work that has sought to estimate the relationship between 

population density, the distance from the grid, and household demand, including 

work by Fuso Nerini et al. (2016; see Appendix for details of this work) and 

Olatomiwa et al. (2015). 

The second approach for dealing with demand is to assume a level of demand 

that is applied to all households or one that distinguishes between rural and 

urban households. The level can be based on a generic idea of the energy 
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demands from different appliances and estimates of the energy necessary to 

supply them. A similar approach is to consider energy access goals as laid out by 

one of the major institutions concerned with this topic—e.g., the IEA level of 

basic access13 or a selection of tiers within the World Bank’s Multi-Tier 

Framework for measuring energy access (Bhatia and Angelou 2015; Mentis et al. 

2015, 2016; Moksnes et al. 2017; Ohiare 2015; Deichmann et al. 2011; Levin 

and Thomas 2012; Van Ruijven, Schers, and van Vuuren 2012; Dagnachew et 

al. 2017; Sahai 2013). One challenge regarding the use of the Multi-Tier 

Framework is that different publications appear to use different accounts of what 

levels of consumption fall into which tiers of energy access. Most notably Fuso 

Nerini et al. (2016) cites the World Bank Global Tracking Framework14 (Angelou 

et al. 2013, 101), but this differs from the description of energy tiers provided by 

the World Bank ESMAP report Beyond Connections (Bhatia and Angelou 2015, 

6). Differences between the two accounts are shown in Table 1. For this report, 

the Global Tracking Framework definition of the energy access tiers is used 

when controlling for demand across models.  

Table 1. Definitions of energy access tiers from two publications 

Beyond Connections (kWh/hh/yr) Global Tracking Framework (kWh/hh/yr) 

 Tier 0 NS  Tier 0 ≤ 3 

0.012 ≤ Tier 1 < 0.2 3 < Tier 1 ≤ 66 

0.2 ≤ Tier 2 < 365 67 < Tier 2 ≤ 321 

365 ≤ Tier 3 < 1,241 322 < Tier 3 ≤ 1,318 

1,241 ≤ Tier 4 < 2,993 1,319 < Tier 4 ≤ 2,121 

2,993 ≤ Tier 5  2,121 < Tier 5  
Sources: Bhatia and Angelou (2015) and Angelou et al. (2013). 

Note: NS = not stated.  

 

The third and final approach is to try to attain detailed estimates of demand by 

looking at current demand in the country across different income groups and 

population densities (both of which are thought to correlate positively with 

demand) and accounting for differences in rural and urban consumption. Models 

engaging in this level of detail either consider household connections (Moksnes 

et al. 2017; Dagnachew et al. 2017; Zeyringer et al. 2015; Ellman 2015; Levin 

and Thomas 2012) or sometimes go further and consider demand from market 

centers, schools, and health centers in currently unconnected areas, based on 

government ambition about electrifying these services (Kemausuor et al. 2014; 

                                                
13 The IEA level of basic access is assumed to be 500 kWh per household per year for urban households and 250 kWh per 

household per year for rural households (IEA 2017b). 

14 Fuso Nerini et al. (2016) provides a link that is no longer working. The source is cited as “Source: World Bank Global 

Tracking Framework, Source: Elaboration of the authors from Ref. 

[http://documents.worldbank.org/curated/en/2013/05/17765643/global-tracking-frameworkvol-3-3-main-report.].” 
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Modi et al. 2013; Parshall et al. 2009; Sanoh et al. 2012). Obviously this detailed 

level of assessment is possible only at smaller scales and contingent upon the 

data and plans available from the local utility.  

As mentioned, it is important to consider demand profiles so that the LCOEs for 

renewable generation systems are calculated in a way that ensures that the 

systems can effectively meet household demand (such calculations also require 

spatially and temporally explicit data on resource availability). Furthermore, 

incorporating demand profiles is important to ensure that the LCOEs for different 

generation sources reflect how increasing diversity of demand decreases system 

costs, thereby driving lower LCOEs for mini-grids and the grid.  

Despite the importance of demand profiles, a number of models do not assess 

the issue in detail, instead estimating LCOEs for different systems based on what 

are believed to be plausible estimates for different generation systems. This is 

done either by using average estimates for LCOE for different systems (Levin 

and Thomas 2012) (which negates the need to assess the way LCOE varies in 

space based on resource availability) or by using estimates of capital costs 

($/kW) that include costs of storage and account for the diversity of demand on 

the system (Fuso Nerini et al. 2016; Mentis et al. 2015, 2016). 

Models that do consider demand profiles adopt a number of approaches. Szabó 

et al. (2013) assume a standard profile: one-third of demand is anticipated to 

occur during the day with two-thirds occurring in the evening. Ellman (2015) 

estimates demand profiles based on an assessment of the appliances in different 

households and an assumption of when they will be used. Other models use 

demand profiles established elsewhere in the literature (Bertheau, Cader, and 

Blechinger 2016; Moner-Girona et al. 2016). Finally, some models add 

randomness to the demand profiles of each dwelling in an attempt to reflect the 

fact that different households turn on their appliances at slightly different times 

(Ellman 2015). Overall, models that more accurately reflect the temporal 

variability in demand at the level of the household do a better job at accurately 

allocating the technologies because they can account for the reduced costs that 

larger systems—such as mini-grids and the grid—can achieve.  

ESTIMATING RENEWABLE RESOURCE 
AVAILABILITY 

Resource availability is a central input to LCEMs because the availability of wind, 

sunshine, and hydro potential is a principal driver of the cost of generating 

electricity for any distributed renewable system. Models deal with this input in 

different ways. The simplest models use coarse inputs, breaking the area being 

modeled into windy and not windy areas or sunny and cloudy areas and 
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determining generating costs from there (Fuso Nerini et al. 2016). More nuanced 

approaches include the use of historic data, which account for resource 

availability (Mentis et al. 2017) and allow generation systems to be sized 

accurately based on a set of reliability parameters, such as ensuring that power 

outages will not occur on more than 5 percent of days per year (Szabó et al. 

2011).  

Models that seek to incorporate micro-hydro into their assessments have to 

contend with a lack of hydrological data in sub-Saharan Africa. They address this 

by using a mix of topographic data and stream-flow data to identify water bodies 

that meet minimum requirements for installing micro-hydro facilities (Mentis et al. 

2015, 2016; Moksnes et al. 2017; Szabó et al. 2013). Other models (such as 

Mentis et al. 2017) draw upon work that estimates hydrological potential using 

similar methods, including ground-truthing through the use of data from river 

gauges (such as Korkovelos et al. 2018).  

ESTIMATING DIESEL COSTS 

Models that include the possibility of using diesel generators to provide electricity 

require a cost of diesel to calculate LCOE. Models either simply assume a price 

for diesel (usually $1/liter) or use the national diesel price (Sanoh et al. 2012; 

Modi et al. 2013; Kemausuor et al. 2014; Ohiare 2015; Ellman 2015). The most 

nuanced approach is to combine national diesel prices with information on 

transport infrastructure to calculate a spatially explicit diesel price that reflects the 

cost of transporting diesel to the unconnected area by small truck (Mentis et al. 

2015, 2016; Moksnes et al. 2017; Moner-Girona et al. 2017; Szabó et al. 2013). 

DETERMINING TARIFFS 

Determining the LCOE of grid extension must include some account of the cost 

of electricity from the grid. This is usually based on the existing electricity tariff 

(Szabó et al. 2013; Fuso Nerini et al. 2016), though this rate is sometimes 

amended to use what would be considered cost-reflective tariffs (Parshall et al. 

2009). Some models go to the extent of estimating what plausible investments in 

the grid would do to the tariff price. For example, Modi et al. (2013) considers 

what would happen if Liberia made investments in its grid, reducing what was 

extremely expensive grid generation at the time the model was written.15 A final 

approach involves linking the outputs of the LCEM to a larger grid optimization 

model to derive the optimal cost-reflective grid tariff (Moksnes et al. 2017; Mentis 

                                                
15 This approach was justified in this instance because Liberia’s energy infrastructure was built during the civil war—a period of 

extreme financial duress—resulting in extremely high grid generation costs that were due to be addressed. 
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et al. 2015, 2017). Such an approach begins to raise computational challenges 

for these models and is thus discussed in greater detail below in the section on 

computational challenges in LCEMs. 

DETERMINING INVESTMENT COSTS (CAPITAL AND 
LABOR) 

As mentioned, knowing the investment costs of the different technologies is of 

central importance to estimating their LCOE. Different LCEMs use different 

estimates, including institutional estimates such as the World Bank (Mentis et al. 

2015, 2016, 2017), consultations with the national utility (Moner-Girona et al. 

2016; Modi et al. 2013), or literature reviews (Levin and Thomas 2012; Mentis et 

al. 2015; Fuso Nerini et al. 2016; Mentis et al. 2017). Because grid investment 

costs vary in space depending on the terrain where construction is taking place 

as well as on the distance from any service roads, one model has sought to cost 

grid infrastructure using a base cost and then increasing that by a factor that 

reflects the steepness of the terrain model and proximity to the nearest road 

(Mentis et al. 2017).  

Although all models seek to use credible estimates of the cost of grid 

infrastructure, parameters vary widely across models (see Table 2). Costs vary 

between contexts, and the larger literature on electricity infrastructure contains a 

wide range of estimates of these costs. Levin and Thomas (2012) note that grid 

investment costs described in the literature range from $50,000 to $500,000 per 

kilometer. The largest variance occurs in the cost of high-voltage power lines 

(Table 2).  
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Table 2. Grid investment costs across a selection of LCEMs 

Indicator 
Fuso Nerini et 

al. (2016)a 
Mentis et al. 

(2015, 2016, 2017) 
Modi et al. 

(2013) 
Moksnes et 

al. (2017) 
Sanoh et 
al. (2012) 

Deichmann et al. 
(2011) 

Dagnachew et al. 

(2017) (low cost) 
Dagnachew et al. 
(2017) (high cost) 

Line lifetime (years) 30 30 30 NS NS NS NS NS 

Transformer lifetime 
(years) 

NS NS 10 NS 10 NS NS NS 

High-voltage line 
cost ($/km)b 

53,000 (108kV), 
28,000 (69kV) 

53,000 (108kV), 
28,000 (69kV) 

NS 92,823 (kV not 
stated) 

NS 192,000 (220kV), 
90,000 (132kV) 

28,000 (132kV) 90,0000 (132kV) 

Medium-voltage line 
cost ($/km) 

9,000 (33kV) 9,000 (33Kv) 40,000 (kV 
not stated) 

9,000 (kV not 
stated) 

16,000 (kV 
not stated) 

106,154 (132kV), 
23,000 (33kV),  

20,000 (11kV) 

9,000 (33kV) 23,000 (33kV) 

Low-voltage line 
cost ($/km) 

5,000 (0.2kV) 5,000 (0.2kV) 40,000 (kV 
not stated) 

5,000 (kV not 
stated) 

12,000 (kV 
not stated) 

10,611 

(kV not stated) 

5,000 (kV not 
stated) 

10,600 (kV not 
stated) 

Transformers $5,000/50kVA $5,000/50kVA $105/grid 
system kW 

NS $1,000 $21,818–$60,000/unit $5,000/km $35,000/km 

Connection cost for 
grid ($/hh) 

125 125 25 NS 263 NS 100 250 

Connection cost for 
mini-grid ($/hh) 

100 100 100 NS 263 NS 100 250 

T&D losses (%) 10 7–29c 19.2 NS 2 NS NS NS 

Distribution loss (%) NS NS 12 
 

3    

Distribution  

O&M cost  

(% installation cost) 

2 2 1 NS NS NS NS NS 

Transformer O&M 
cost (% installation 
cost) 

NS NS 3 NS 3 NS NS NS 

Generic grid cost Szabó et al. (2013) assumes a generic grid construction cost (i.e., for all technologies) of €0.025/kWh/km. Levin and Thomas (2012) assume $200,000/km. 
Zeyringer et al. (2015) assume $157,470/km. Moner-Girona et al. (2016) assume €40,000/km. 

Notes: NS = not stated. km = kilometer. kV = kilovolt. kVA = kilovolt-amp. kW = kilowatt.  
a Fuso Nerini et al. (2016) is not a spatially explicit LCEM, and thus its results are not discussed in detail in this review. However, Fuso Nerini et al. (2016) models 

the dynamics shaping LCEMs, and their outputs are invoked in a number of models reviewed here, so their cost estimates for the grid are relevant for 

consideration as a driver of variance across LCEMs.  
b A further challenge in comparing models is the use of different infrastructure requirements for different available voltages.  
c Range is due to country-specific losses. 



 

35 Achieving Universal Electricity Access at the Lowest Cost  

 

Notably, Van Ruijven, Schers, and van Vuuren (2012) sensitivity-test their model 

to different grid investment costs, ranging from $28,000 to $78,000 per kilometer 

for high-voltage (HV) lines and $5,000 to $9,000 for medium-voltage (MV) lines 

(notably smaller than the ranges described in Table 2). They observe that 

variations in these costs have a larger impact on technology allocation than 

variations in demand. Dagnachew et al. (2017) likewise tests the sensitivity of 

their model to high and low capital costs for the grid (see Table 2 for costs). 

Assuming high costs results in the connection of an additional 20 million to 110 

million people to distributed generation, depending on the demand scenario.16 

Finally, Sanoh et al. (2012) similarly finds their model is sensitive to variations in 

the cost of MV lines.  

In addition to using a variety of cost estimates for the grid, models also make 

different assumptions regarding the capacity of grid infrastructure. In particular, 

the assumed maximum distance for a low-voltage (LV) power line varies across 

studies. Mentis et al. (2017) places a boundary on LV power lines at 50 km,17 

Szabó et al. (2011) suggests the limit is 10 km, and Deichmann et al. (2011) 

suggests it is 120 km. Obviously limiting the extent to which grid connections can 

be extended has major impacts on which technologies provide the least-cost 

electrification for which households and individuals. 

Distributed generation costs also vary across models (Table 3), particularly in 

relation to battery life and investment costs for renewable components. Attaining 

accurate estimates of distributed generation systems is challenging because 

costs for renewable components are changing rapidly18 and because different 

systems are built to different capacities. Battery costs are not easy to represent 

in a single metric, especially when some models use lead-acid batteries and 

others use lithium-ion batteries. Different models use different representations of 

renewable energy cost and capacity, making it difficult to compare costs across 

models and to interrogate costs in the model publications. Finally, the 

comparison of costs across distributed systems is complicated by the use of 

different discount rates in different models. For example, Szabó et al. (2011, 

2013) uses 5 percent, Zeyringer et al. (2015) uses 6 percent, and Mentis et al. 

(2015, 2016, 2017) uses 10 percent.  

  

                                                
16 The impact is larger at low levels of demand.  

17 Mentis et al. (2017) points out that it is unknown whether this is an optimal length and that the question deservers further 

investigation. The authors also note that line length is a model parameter that could be changed, though this would have 

implications for computational intensity.  

18 For a longer discussion, see the section below on computational challenges and time steps. 
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Table 3. Distributed energy investment costs across a selection of LCEMs 

Indicator Szabó (2013) 
Moksnes et al. 

(2017) Modi et al. (2013) 

Mentis et al. 

(2015, 2016, 2017) 

PV lifetime (years) NS NS 20 15–20 

Battery lifetime (years) 4 NS 2.5 NS 

PV module (stand-alone) 

capital cost 

€1,100/kWp NS $1,000/kW NS 

PV system (stand-alone) 

capital cost 

NS $1,633/kW NS $5,500/kW 

PV system mini-grid 

capital cost 

NS $1,363/kW NS NS 

BOS + installation €800/kWp NS 50% of PV price NS 

Battery price €1.5/Ah $1,688/kW $213/kWh NS 

PV O&M 2.5% of PV + 

battery price 

$10/kW NS NS 

Note: NS = not stated. kWp = kilowatt peak. kW = kilowatt. Ah = amp-hour. kWh = kilowatt-hour. The LCOE for 

distributed generation involves many more inputs than those shown here, but because many component costs 

are bundled differently, a comprehensive comparison is not possible. This table is thus intended only to show 

the variance in price of some of these crucial components.  
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MODELING THE FUTURE: TIME 

STEPS 

Most LCEMs are concerned with modeling the infrastructure allocations 

necessary to meet 100 percent access goals at some point in the future. The 

only exception is Szabó et al. (2011), which seeks to provide an instructive 

snapshot of where different technologies might be competitive in providing 

access at the time of publication (2011). Most models of the future consider only 

a single time step to a single point in the future—these are also known as 

overnight-build models (Parshall et al. 2009; Sanoh et al. 2012; Mentis et al. 

2015, 2016; Moksnes et al. 2017; Van Ruijven, Schers, and van Vuuren 2012). 

For such models, the point in the future at which access goals are set has 

implications for the overall investment costs because it affects how discount rates 

play out (Kemausuor et al. 2014). Only three models use more than a single time 

step. Modi et al. (2013) considers three time steps in Liberia (at 5, 10, and 15 

years in the future). Dagnachew et al. (2017) considers yearly time steps from 

2010 to 2030 across sub-Saharan Africa. The IEA states that its model 

incorporates the process of learning and cost reductions, suggesting that time 

steps must be used; it offers no details, however, on the number of times these 

figures are updated (IEA 2017b).  

The limited number of time steps has the advantage of limiting the computational 

intensity of the model, meaning the model is run only once (other computational 

challenges in the models are discussed in greater detail below). That said, using 

a single time step does reduce a model’s ability to handle dynamic processes 

such as changing prices (most notably for diesel and renewable components, 

discussed in greater detail below). Single-time-step models also do not reflect the 

extent to which grid infrastructure takes longer to build than distributed 

generation, which has implications in the real world for how long people persist 

without access to electricity.  

Regardless of the number of time steps applied, because the vast majority of 

models are forward looking, they must include allowances for changes in time-

sensitive parameters that are important to electrification costs. These parameters 

generally include population growth, increasing demand among connected 

households, changing diesel prices, and decreasing capital costs for renewable 

components.  
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POPULATION GROWTH 

Models need to account for population growth into the future because increased 

population results in increased demand. Since population growth is anticipated to 

be significant in many parts of the world where energy access rates are low, this 

is a salient driver of demand density and therefore technology choices. Models 

tend to use population projections from the United Nations (or some other large 

institution). For models in which demand is differentiated based on whether the 

demand node is rural or urban, there is a step by which population growth in an 

area can cause any demand node to change from rural to urban, based on 

national definitions of rural and urban areas (Kemausuor et al. 2014; Ohiare 

2015; Mentis et al. 2015, 2016; Moksnes et al. 2017). Despite accounting for 

changing demographics in this way, the models reviewed here pay no attention 

to rural-urban migration dynamics, and the impact of this gap on model findings 

is not discussed in the modeling literature. However, other authors have pointed 

out that natural increase, rather than rural-urban migration, is the dominant 

process driving urban growth in sub-Saharan Africa (Parnell and Walawege 

2011), and thus the impacts of this simplification might be limited.  

INCREASING DEMAND 

Only a few models account for increases in demand. These models seek to 

account for the fact that newly connected households tend to see their demand 

increase over time. Modelers usually assess this rise in demand based on data 

from the utility (Parshall et al. 2009; Sanoh et al. 2012; Modi et al. 2013; 

Kemausuor et al. 2014) or by using a standard estimate of how demand will 

increase (Moner-Girona et al. 2016).  

FUTURE DIESEL PRICES 

Models that consider the capacity of diesel-based systems to meet energy 

demand have to account for future variations in the cost of fuel. This is a fraught 

endeavor, with fuel prices being notoriously hard to predict. Consequently, 

models tend to ignore fluctuations (Sanoh et al. 2012; Modi et al. 2013; 

Kemausuor et al. 2014; Ohiare 2015) or run multiple scenarios using a high and 

low cost for diesel (Mentis et al. 2017). It has been suggested that models could 

source diesel costs by using historical data and smoothing the price over a 

moving average (Moner-Girona et al. 2016), though no model has implemented 

this approach. 
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DECREASING CAPITAL COSTS 

A final consideration for models is the issue of declines in the cost of capital 

infrastructure. This is particularly relevant for renewable components, which have 

seen steep declines in price in the recent past. Few models address this issue 

comprehensively, instead using costs at the time of writing. While this approach 

meets the simplifications of an overnight-build approach—which assumes 

building infrastructure now that will meet the demand of future populations—it 

does not capture the very real fact that while infrastructure is being built, the cost 

of renewable components is expected to fall. This approach not only is likely to 

underestimate the role for distributed generation substantially (given the 

substantial price declines that have taken place and that are predicted), but also 

results in the need to update models with future costs. For example, Mentis et al. 

(2017) advances the analysis of Fuso Nerini et al. (2016) using updated costs for 

renewables, and Szabó et al. (2013) updates costs used in Szabó et al. (2011).  

Only two models were identified to have accounted for declining renewable 

costs, based on their multi-time-step approach: Dagnachew et al. (2017), and 

IEA (2017). Dagnachew et al. (2017) applies a historically derived learning rate to 

account for the cost declines in renewable technologies.19 This is applied 

annually over every time-step in the model (see above) The IEA states that its 

model fully incorporates the process of learning and cost reductions, considering 

not only technologies available today, but also those approaching 

commercialization—though it does not attempt to predict technological 

breakthroughs (IEA 2017b). Unfortunately, however, the IEA model provides no 

details on the learning rates, the technologies considered, the eventual prices 

achieved, or the number of time steps considered. Finally one model (Ohiare 

2015) accounts for the potential impact of future cost declines by sensitivity 

testing their models to significant (250%) reductions in renewable technology 

costs. Doing so changes the proportion of households that are most cheaply 

connected via distributed energy in Nigeria from 2% to 35% (Ohiare 2015) (see 

Appendix). 

                                                
19 This learning rate is not published in Dagnachew et al. (2017); rather, it was revealed via personal communication (A. 

Dagnachew, personal communication, November, 6, 2018). The original derivation of the learning learning rate is published 

in Stehfest et al. (2014).  
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COMPUTATIONAL CHALLENGES 

WITH MODELS 

While data challenges (and the variety of ways they are solved) drive part of the 

variation in model results, the other important source of variability in models is 

how they deal with dynamic elements of electrification modeling, which require 

significant computational resources to solve. This section discusses the various 

ways in which these processes are simplified and addressed.  

Computational problems around LCEMs are related to four dominant issues; all 

of them pertain to the grid, and one also pertains to mini-grids: 

• Building the grid network in a way that minimizes total grid length, which is 

important for minimizing grid cost; 

• Capturing the dynamic interaction between LCOE calculations and grid 

construction decisions; 

• Capturing the dynamic interaction between grid demand and grid price, which 

is an important input for LCOE calculations for the grid; and  

• Clustering households when deciding whether to serve them with the grid or 

mini-grid connections.  

THE CHALLENGE OF BUILDING A GRID OF 
OPTIMAL LENGTH 

 

The challenge of grid length stems from a computational problem commonly 

known as the traveling salesman problem. In its simplest terms the problem 

refers to the need to find the shortest route between a set of points.20 The 

traveling salesman problem has no “efficient solution,”21 meaning that the optimal 

solution cannot be determined definitively at the outset and instead must be 

generated by iteratively testing a number of different solutions. The challenge is 

that as the number of nodes for which a shortest route is being sought increases, 

the number of tests for the solution increases exponentially.22 Since LCEMs 

                                                
20 In the traveling salesman problem, a hypothetical salesperson must travel through a number of cities and, before setting out, 

needs to define the shortest route connecting all points. An in-depth discussion of this problem is beyond the scope of this 

paper. 

21 Problems of this sort are also known as NP-complete problems. 

22 The following is a helpful representation of the traveling salesman problem and the computational challenges involved in 

solving it: https://www.youtube.com/watch?v=SC5CX8drAtU (“Traveling Salesman Problem Visualization,” published by 

poprhythm, August 18, 2013).  

https://www.youtube.com/watch?v=SC5CX8drAtU
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typically consider a huge number of demand nodes, resolving this problem 

accurately entails deploying impossibly large computational resources.  

Different models address this challenge in different ways. The simplest approach 

is to ignore the problem altogether. As already mentioned, some models simply 

draw a corridor around the existing grid and assume that every household within 

that corridor will be most cheaply connected to the grid and that anything beyond 

that will be most cheaply connected with distributed generation (Szabó et al. 

2011; Moner-Girona et al. 2016; Bertheau, Cader, and Blechinger 2016; 

Bertheau et al. 2017).  

A second approach, used by Mentis et al. (2015, 2016, 2017), avoids the 

problem of the traveling salesman by iteratively extending the grid and only 

connecting those demand nodes that meet certain criteria. Specifically, the 

approach focuses on cells of demand (rather than settlements) and assesses 

whether the demand in each cell (which is based on the size of the population 

and the level of household demand) is sufficiently large to warrant extending the 

grid (based on the cost of grid extension). The approach does not aim to connect 

all demand nodes and therefore does not have to determine the shortest path to 

do so (i.e., the traveling salesman problem). Instead it starts with the cell closest 

to the existing grid, checks whether it meets the requirements for a connection, 

and then updates the status of the cell and grid before checking the next cell. 

This approach accounts for the fact that extending the grid requires 

strengthening the existing grid (which will incur a cost) by linearly increasing the 

minimum demand requirement necessary to satisfy the decision to extend the 

grid. Although Mentis et al. (2015, 2016, 2017) avoid the traveling salesman 

problem, these studies limit the possibility for grid extension to 50 km from the 

existing grid, based on what are understood to be technical limitations on MV 

powerlines23 (D. Mentis, personal communication, November 8, 2018). In this 

way the model does not account for the possibilities of extending the backbone of 

the grid transmission infrastructure.  

For models that do include scope for new grid transmission infrastructure and 

that work by first seeking to connect every demand node to the grid, the 

approach is to use a simplified heuristic to solve the traveling salesman problem. 

They use some variation on a minimum spanning tree algorithm, amended to 

behave in a “greedy fashion” (i.e., first connecting points with the largest 

demand-to-distance ratio) (Deichmann et al. 2011) and to avoid creating loops 

(Parshall et al. 2009; Modi et al. 2013; Sanoh et al. 2012; Kemausuor et al. 2014; 

Ohiare 2015).  

                                                
 

23 It should be noted that this parameter could simply be changed in the model.  



Achieving Universal Electricity Access at the Lowest Cost 42 

 

The impacts of these different simplifications are relatively underexplored. The 

only exception comes from Abdul-Salam and Phimister (2016), who test the 

approach used in the Network Planner model (Parshall et al. 2009; Modi et al. 

2013; Sanoh et al. 2012; Kemausuor et al. 2014; Ohiare 2015), by comparing the 

heuristic results with the results of a computationally intensive, nonlinear 

programming formulation that can solve the traveling salesman problem 

completely. By comparing the two results across 434 simulations of randomly 

generated nodes, they were able to estimate the accuracy of the heuristic. They 

found that the nonlinear programming approach outperformed the Network 

Planner heuristic 85 percent of the time but that the differences were small.24 

They also found that the largest errors occurred when solving for nodes that were 

highly dispersed (i.e., remote settlements) and that the Network Planner 

algorithm systematically underestimated the optimal number of grid connections 

(Abdul-Salam and Phimister 2016). 

THE DYNAMIC RELATIONSHIP BETWEEN GRID 
CONSTRUCTION AND LCOE 

Any decision to expand the grid subsequently changes the LCOE for the grid for 

unconnected demand nodes—because the distance to the grid from those nodes 

will now have changed. If this change in LCOE is large enough to make render 

the grid with the lowest LCOE of all the technologies then the grid should be 

expanded again to connect these nodes, resulting in further changes to the 

LCOE for the grid for unconnected demand nodes. The only robust means to 

deal with this dynamic is to run the model iteratively, expanding the grid and 

calculating the LCOE, until the number of new demand nodes being connected to 

the grid is zero.  

Most models ignore this challenge altogether. As above, models that simply 

assume a corridor around the existing grid avoid this problem completely (Szabó 

et al. 2011; Moner-Girona et al. 2016; Bertheau, Cader, and Blechinger 2016; 

Bertheau et al. 2017). Other models that undertake some sort of grid extension 

overlook these iterative dynamics, simply calculating the least-cost technology 

allocation and ignoring the fact that extending the grid will reduce the cost of grid 

extension for neighboring households (Parshall et al. 2009; Kemausuor et al. 

2014; Sanoh et al. 2012; Modi et al. 2013).  

Beyond this, two models undertake some sort of iterative approach. As 

mentioned, Mentis et al. (2015, 2016, 2017) run the model iteratively, assessing 

adjacent cells and connecting those that meet the requirements for a grid 

                                                
24  The average difference was 0.7 percent. The largest difference was 3.7 percent, equivalent to about $1.8 million in grid 

extension costs, based on cost estimates from Ghana, using input data for more than 1,000 real unconnected settlements. 
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connection. Though this iterative approach captures the dynamic relationship 

between grid extent and the cost of subsequent grid connections, it is 

computationally intensive (D. Mentis, personal communication, February 2, 

2018). In the published findings this is managed by limiting the model so that the 

grid is not extended more than 50 km from the existing and planned grid.  

Dagnachew et al. (2017) solves this problem by incorporating 30 time steps into 

the model. The model assesses the LCOE for each technology (accounting for 

reduced renewable prices) and recalculates the LCOE for the grid based on the 

updated extent of the grid from the previous year/time step. 

THE DYNAMIC INTERACTION BETWEEN GRID 
DEMAND AND GRID PRICE 

Connecting new households to the grid results in changes to the grid generation 

price because it both increases overall demand and changes the overall demand 

profile on the grid. Changes in the price of grid electricity change the LCOE for 

grid connections; one no longer has an accurate estimate of the cost of 

connecting households to the grid, so the cost estimate needs to be updated to 

reflect the reduced grid price. Resolving this problem requires an iterative 

approach: (1) calculate the LCOE for each technology to determine how many 

settlements are most cheaply connected to the grid; (2) determine the new grid 

price (i.e., the tariff) based on this increased demand and altered overall demand 

profile; and (3) rerun the LCEM to determine how many households are now 

most cheaply connected to the grid. This process must be repeated until no new 

grid connections are established.  

As with the previous problem, the computational challenges involved in this 

process are significant because the iteration requires rerunning not only the 

LCEM but also the grid optimization model to determine the updated grid tariff. 

Only Mentis et al. (2017) and Moksnes et al. (2017) address this issue to any 

extent by integrating their LCEMs with the outputs of a grid optimization model 

(OSeMOSYS). Moksnes et al. (2017), however, undertakes only a single 

iteration of this process, noting that this likely still results in a grid tariff that is too 

high. Notably, this single iteration was found to reduce the grid price from 

$0.125/kWh to $0.08/kWh, with the result that an additional 1.22–1.67 million 

people would be connected most cheaply by the grid, depending on the demand 

scenario used (Moksnes et al. 2017). Ignoring or simplifying this issue is likely to 

underestimate grid connections because both increases in grid extent and 

increased demand on the grid reduce the subsequent LCOE of grid connections.  
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THE CLUSTERING APPROACH USED BY THE 
MODEL 

The issue of clustering is important for determining whether there is sufficient 

density of demand to warrant the construction of a larger energy delivery 

system—such as a mini-grid or the grid. In an ideal scenario the model would 

undertake some assessment of individual households to determine whether the 

cost savings delivered by the larger system warranted the increased capital 

expenditure. At some point the model would have to determine which households 

are suitably close together to warrant clustering and which ones are so far apart 

that clustering is no longer the cheapest option.  

All but one of the models assessed in this review fails to address this problem. 

Instead, the models simplify things by only considering the cost of connecting an 

entire settlement (or grid cell, depending on the model) with a single technology. 

Such a simplification has the advantage of significantly reducing the 

computational complexity of the model (as a huge number of individual 

households is reduced to a much smaller number of settlements, or grid cells), 

thereby vastly reducing the number of calculations necessary and eliminating the 

need for a clustering algorithm within the model. That said, such a simplification 

introduces a new problem regarding how one estimates the cost of distribution 

infrastructure when connecting an entire settlement or grid cell. The models 

account for this based on the idea of a mean household distance, which is an 

estimate (either derived or assumed) of the mean distance between households 

at the demand node (Parshall et al. 2009; Sanoh et al. 2012; Kemausuor et al. 

2014; Modi et al. 2013; Ohiare 2015). Based on this number and the number of 

households in a settlement or cell, the model can generate the total length of 

distribution infrastructure required and in turn the cost of that infrastructure. To 

calculate transmission costs, the models tend to assume that transmission 

infrastructure will need to be built to the center of the cell or settlement.  

The only advance on this approach comes from Ellman (2015), which applies the 

Reference Electrification Model at a small enough scale (Vaishali District, in 

India) that it can consider every household that was to be electrified. As a result, 

the model includes an algorithm that determines whether the collective demand 

from any number of suitably closely situated households warrants constructing a 

grid or mini-grid connection. Although a detailed discussion of Ellman’s (2015) 

clustering algorithm is beyond the scope of this review, it is worth noting that the 

model involves a sensitivity test to consider the impact of two different clustering 

algorithms. The clustering method used drives significant differences in the 

outcome of the model. Figure 4 shows that under the same scenario the role for 

the grid is much larger using the second clustering method. The difference in 

results is driven by the fact that one clustering approach ends up placing 

households into lots of small clusters that lack the scale to justify a grid 
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connection. The other approach does the opposite, creating large clusters and 

therefore creating greater opportunities for the scales necessary to make grid 

connections competitive (Ellman 2015). Since the other models entirely overlook 

the impacts of a particular clustering dynamic, it is possible that the numbers they 

produce could be wrong by a similar margin.  

Figure 4. The impact of clustering methods on technology allocation 

across scenarios 

 

Source: This figure is a visualization based on data published in Ellman (2015). 

 

In addition to the four computational challenges described here, LCEMs are 

simplified representations of reality in two other ways. First, none of them 

account for the costs of upgrading existing grid infrastructure, a step that would 

be necessary to ensure that grid connections can supply reliable power to newly 

connected households. This is generally because the cost-benefit calculus 

around grid upgrading extends far beyond the imperative to achieve energy 

access. The only model that offers any sort of exception to this is Ellman (2015), 

which calculates the cost of unserved need—i.e., it interprets blackouts as costs 

that are added to the LCOE.25 Second, LCEMs account only for the capital costs 

involved in rolling out the necessary infrastructure, completely ignoring the costs 

                                                
25 Ellman (2015) does this both to estimate the cost of an unreliable grid and to determine optimal distributed generation 

capacity, noting that households are often willing to accept lower-cost energy with higher unreliability as long as critical 

demand is met. See the Appendix for more details.  
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of capacity building that would be sustain such a huge investment in 

infrastructure. This is true for both grid and distributed infrastructure.  
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RESULTS: COMPARING MODEL 

FINDINGS 

It is clear that LCEMs face significant data problems as well as computational 

challenges, and they solve these problems in a variety of ways. This variation 

raises the question of accuracy among these models, an issue that is particularly 

pertinent considering the extent to which these models are intended to aid policy 

making. One means of exploring model accuracy is to assess the level of 

agreement across models.  

For this analysis, models are compared in terms of the percentage of 

connections they allocate to distributed-generation technologies. This output from 

the models is distinct from estimates of financing needs, which are different given 

that distributed systems tend to cost more than the grid (at the same levels of 

demand) and which some models have sought to focus on (most notably the 

IEA). Although financing estimates may be more useful to advocates and policy 

makers, they are not used here because not all models published these data. 

Furthermore, findings regarding financing requirements are subject to additional 

variability based on the fact that different models invoke different capital costs, 

discount rates, and investment periods. All of these factors also affect technology 

allocation, but to a lesser extent, and thus technology allocation forms the basis 

of this comparison.  

Comparison across published findings, however, is not straightforward. Models 

are applied to very different geographies (districts and regions within countries, 

countries, continents, and the world) and consider different technologies (see 

Figure 2). They use different parameters, making easy comparison of the results 

impossible. Many models do not publish their source code, making it impossible 

to compare models (D. Mentis, personal communication, 10 December, 2018). 

To address these discrepancies, this analysis includes all published findings of 

geographies that could be identified in the literature and makes the geographies 

explicit in the comparison. It identifies the specific model scenarios that are 

thought to be most comparable based on similar assumptions about demand, 

which is chosen given its centrality in determining LCOE. This was achieved by 

considering demand ranging between tiers 2 and 4 of the World Bank Multi-Tier 

Framework for measuring energy access. It is within this range—around tier 3—

that many advocates consider energy access to be plausibly addressed, and all 

models included some analysis of demand in this range. For both geography and 

demand, this is an imperfect approach, but it is the best we can achieve based 

on the published work. Notably, it was not possible to control for factors beyond 
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countries/regions and demand, because no published findings considered both 

the same geography and the same technology.  

The exact scenarios chosen for this analysis can be seen in Table 4. The range 

of demand in some models is extremely large—for example, Parshall et al. 

(2011) use a range of 360–2,090 kWh per household per year. Such large 

ranges are usually based on an assessment of demand that includes urban 

demand, with the model ascribing a level of demand to settlements based on 

their size and income. Although the range is large, the model likely uses the low 

end of the demand range for remote rural settlements, treating them in a manner 

similar to models that use a single, smaller level of demand. The low end of the 

demand spectrum ranges from 43.8 kWh per household per year (tier 2) to 360 

kWh per household per year (tier 3), suggesting a much more reasonable 

comparison across models. Overall, the average demand across models 

(considering the low end of the range for any models invoking a large demand 

range) is 290.06 kWh per household per year, with a standard deviation of 252.8 

kWh per household per year. 

Despite efforts to keep demand comparable across models, this approach does 

not resolve the problem of comparing models based on different parameters. 

Overall, any cross-model comparison, based on the existing publications, is a 

fraught endeavor. In consequence, a clear conclusion of this work is that our 

ability to determine the accuracy of these models is extremely limited. To try to 

account for the limitations of this analysis, this work has not only undertaken the 

analysis described above but also tried to make the differences in the models 

explicit. As a result the analysis includes the following:  

1. A description of not only the results deemed comparable across models 

(red points in Figure 5) but also the scenarios run by the models (blue 

points in Figure 5), excluding sensitivity testing; 

2. Table 4, which makes explicit the scenarios selected for comparison 

across models along with their levels of demand; 

3. A more complete account of all the published model results reviewed in 

this analysis (Table 5); and  

4. A brief narrative of the workings of each set of published model findings 

(Appendix). 

At the outset it is worth noting that LCEMs are complex, and publications 

documenting their findings frequently fail to include important data on their 

operation. This report has done everything possible to gain complete clarity on 

the operation of these models, including writing to many of the authors of 

publications generating model results. Where they have provided relevant 

information, this has been included and cited; in cases where information is 

believed to be missing, this is simply pointed out in the model assessment. 
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The results of the analysis can be seen in Figure 5. The red points indicate 

results that are deemed to be driven by levels of demand similar enough to allow 

for comparison across models. Multiple red points (connected by a bar) indicate 

that the model ran more than one scenario at a comparable level of demand, and 

thus there is a range of comparable results. For example, a model might have 

considered two diesel prices at a constant level of demand. Blue points indicate 

other results from the model that were not considered suitable for comparison 

based on their different estimates of demand. The published results are clustered 

by country or region to allow for comparison where possible. This analysis 

considers only published results that provided an estimate of the newly 

connected population, according to the least-cost technology allocation. Models 

that only provided results for the distribution of technologies across the whole 

population once universal electrification had been achieved were ignored (this is 

because such models would generate much larger estimates for grid connection 

as they would include all the people already connected to the grid). 
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Figure 5. Comparison results across LCEMs estimating technology 

allocation for universal electricity access  
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Table 4. Details of scenario selection for comparison across models and 

publications (supporting information for Figure 5) 

Study 
Demand, 
kWh (tier) Notes and additional/selected scenarios 

Parshall et al. (2009) 360 (2) – 2,090 (4) NA 

Sanoh et al. (2012) 73 (2) – 1,398 (4) NA 

Kemausuor et al. (2014) 150 (2), 4% growth NA 

Ohiare (2015) 400 (3) Declining solar costs 

Mentis et al. (2015) 850 (3) – 1,750 (4) NA 

Mentis et al. (2016) 250 (2) – 1,500 (4) 50 (2) – 1,700 (4) 

Mentis et al. (2017) 695 (3) High and low diesel price 

IEA (2017) 250 (2) – 500 (3), increasing 
over time to reach national 
averages 

NA 

Moksnes et al. (2017) 43.8 (2) – 423 (3) 423.4 (3) – 598 (3) 

Szabó et al. (2013) 250 (2) – 1,000 (4) a NA 

Moner-Girona et al. 
(2016) 

40 (1), 4% growth NA 

Van Ruijven et al. 
(2012) 

420 (3)  High demand; high and low investment 
costs; high and low generation costs; PV 
only (mini-grids do not consider whether 
population densities can support them) 

Dagnachew et al. (2017) 75 (2) – unspecified (3) 322 (3) 

Bertheau et al. (2016) NA Existing grid and pop density, planned grid 
and grid corridor 

Sahai (2013) NS NA 

Ellman (2015) NS Only selected reliable grid scenario; 
assumed in all other models 

Zeyringer et al. (2015) 164 (2) – 1,880 (4) NA 

Note: NS = not stated; NA = Not Applicable 
a This range is based on the use of 4–15 kW diesel generators, which produce 35–135 MWh per year, which 

would provide 30–140 households with tier 2–4 electricity access (M. Moner-Girona, personal communication, 

January 15, 2019). 

 

From the results selected for comparison (red points), it is clear that results vary 

widely, both across models and within regions and countries. Across models of 

different regions and countries, the percentage of the population most cheaply 

connected by distributed technologies ranges from close to 1 percent to 82 

percent. While such large variation might be expected across regions and 

countries, ranges are also large within regions and countries with more than one 

published model result. Results range from 4 percent to 47 percent in Kenya, 

from 1 percent to 34 percent in Nigeria, and from 18 percent to 79 percent in sub-

Saharan Africa. Even within models considering a single geography, the range 

can be large across what seem to be plausible demand scenarios. Van Ruijven 

et al. (2012), considering East Africa, shows that distributed technology 

allocations are cheapest for anywhere between 1 and 82 percent of the 

population. Further, considering the variety of results within each model (blue 
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points for each single model), it is clear that varying inputs across models makes 

a huge difference in terms of technology allocation.  

Regarding the split between grid and distributed technologies, it is also notable 

that the individual countries modeled here do not appear to represent the 

contexts apparent across the larger regions of which they are a part. For 

example, published findings on Burkina Faso, Ethiopia, Ghana, Kenya, Nigeria, 

Senegal, and South Africa all suggest that, at most, less than 50 percent of new 

connections would come from distributed technologies, while for the sub-Saharan 

African region just under half the comparable results (three out of seven) predict 

that more than 50 percent of the population would be most cheaply connected by 

distributed technologies. This is not an impossible outcome; these countries 

constitute only about 30 percent of the currently unelectrified population in the 

region (IEA 2017a). If the models are accurate, however, these countries are not 

representative of the larger region. Notably, these countries include the countries 

that Trotter, McManus, and Maconachie (2017) identify as dominating the 

literature on electrification modeling, leaving out only Tanzania.26 

In addition to variation regarding the split between grid and distributed 

technologies, the split within distributed technologies (i.e., between mini-grids 

and stand-alone systems) again reveals slightly confounding results (Figure 6). 

Individual countries modeled here—such as Burkina Faso, Ethiopia, Flores 

Island, Nigeria, and to a lesser extent Ghana—indicate a larger role for mini-

grids. The exception is Senegal, where stand-alone systems dominate. Despite 

this, across the sub-Saharan African region there is remarkable agreement that 

stand-alone systems will dominate. Complicating matters, this trend toward 

stand-alone systems breaks down at the level of the world, where the single 

global model suggests a larger role for mini-grids. This last finding is especially 

confounding because the IEA model for the world is based on the OnSSET 

model used by Mentis et al. (2017), which points to a larger role for stand-alone 

systems in sub-Saharan Africa. The difference might be explained by the IEA 

models’ inclusion of developing Asia, where higher population densities could 

drive a larger role for mini-grids.27 In that case, however, it is surprising that the 

IEA model does not indicate a greater role for the grid, unless this is undermined 

by the low demand used in the IEA model (rural household demand is 250 kWh 

per year), though the model does indicate that it increases demand over time to 

reach the national average. The other potential explanation is that, like the 

published findings from the OnSSET model, the IEA model limits grid extension 

to 50 km from existing grid infrastructure. Otherwise the explanation could be in 

                                                
26 The countries that dominate the literature on electrification modeling are Ethiopia, Ghana, Kenya, Nigeria, South Africa, and 

Tanzania.  

27 It is also possible that higher demand in developing Asia could drive more mini-grid connections; however, the IEA model 

assumes demand of 250 kWh per rural household and 500 kWh per urban household, so that is not the case in this model. 



 

53 Achieving Universal Electricity Access at the Lowest Cost  

 

the use of learning rates within the IEA model. Unfortunately, none of this can be 

explored owing to a lack of data on the operation of this model. 
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Figure 6. Variability of mini-grid and stand-alone technologies as a proportion of distributed technologies 
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While the above explanations may plausibly explain the different allocation of 

mini-grids versus stand-alone systems across models and geographies, it is 

likely that the sample here is too small to allow for effective comparison—

especially when one considers the variation in grid versus distributed 

connections mentioned above. Supporting this conclusion is the fact that for 

some countries, the same model running slightly different scenarios suggests 

vastly different roles for mini-grids compared with stand-alone systems. This is 

most apparent in the case of Kenya, where Moksnes et al. (2017) shows large 

differences based on demand (ranging from about 43 kWh per household per 

year (low demand) in rural areas to about 400 kWh per household per year (high 

demand) (see Table 5). Likewise, as mentioned, Ellman (2015) shows large 

differences in the choice of distributed technologies in Vaishali District, based on 

the clustering algorithm used in the model.  

While the variation across models and geographies appears real, and while the 

split among models between stand-alone and mini-grid systems suggests 

confounding results, some commonalities do seem to appear across models. 

Even though there is disagreement on the proportion of people who are 

connected most cheaply using distributed generation technologies, there is 

agreement that for the vast majority of geographic space, distributed 

technologies will be the cheapest option (see Figure 7). Although this might seem 

like a paradox at first, it is a result of the fact that most areas have relatively low 

population densities and that, in a number of contexts, population densities are 

highest in relatively close proximity to existing grid infrastructure. Agreement on 

this matter is useful for planning because it means that while caution might need 

to be exercised in terms of what investments to make overall, one can allocate 

certain technology options to certain jurisdictions with much greater certainty.  
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Figure 7. Spatial distribution of least-cost technologies in sub-Saharan 

Africa according to two models, by level of demand and oil price 

 

 

Sources: Mentis et al. (2017) - originally produced by the Joint Research Centre of the European Commissions 

- (top) and Dagnachew et al. (2017) (bottom). 
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Finally, there appears to be emergent agreement across models that micro-hydro 

will have only a limited role in the process of electrification, even though it has a 

relatively low LCOE for generating energy (Fuso Nerini et al. 2016) and 

significant generation potential from micro-hydro has been identified across sub-

Saharan Africa (Korkovelos et al. 2018). As Figure 8 shows, among LCEMs that 

consider hydroelectric mini-grids, they are the cheapest option for less than 12.5 

percent of the population, with most models indicating a role of less than 2.5 

percent. As a relative share of distributed technologies, mini-hydro connects less 

than 20 percent of the population. This conclusion, however, comes with the 

caveat that efforts to identify and cite potential for small-scale hydroelectric 

generation face persistent data problems (Korkovelos et al. 2018). 

Figure 8. Role of hydroelectric technologies in energy access

 

Note: Dagnachew et al. (2017) test for hydroelectric but do not publish specific findings.  

* This refers to all households, not simply the newly connected ones. However, since any 

number of mini-hydro connections will likely be new, this is thought to be a comparable 

result.
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Table 5. Summary of models  

Study Model/institution Country Population data 

Data source for 
location of 

existing grid 
Technologies 

assessed 

Locate 
electrified 
population Demand assessment 

Demand 

(kWh/hh/yr)a 

Parshall et 
al. (2009)  

Network Planner/ 
Columbia 
University 

Kenya Grid (~10 km2–15 
km2) 

Local utility  Grid, mini-grid 
(diesel), stand-alone 
(PV) 

Local utility Derived across income, 
includes institutions, 
increasing over time 

350–2,090  

Sanoh et al. 
(2012) 

Network Planner/ 
Columbia 
University 

Senegal Settlements (low 
res) 

Local utility  Grid, mini-grid 
(diesel), stand-alone 
(PV) 

Local utility, 
census, etc. 

Derived across income, 
includes institutions, 
increasing over time 

93–1,498  

Modi et al. 

(2013)b 

Network Planner/ 
Columbia 
University 

Liberia Settlements (high 
res) 

Local utility  Grid, mini-grid 
(diesel), stand-alone 
(PV) 

Local utility, 
census, etc. 

Derived across income, 
includes institutions, 
increasing over time 

300–2,400  

Keumasor et 
al. (2014) 

Network Planner/ 
Columbia 
University 

Ghana Settlements (low 
res) 

NSc Grid, mini-grid 
(diesel), stand-alone 
(PV) 

Ministry of 
Energy 

Derived across income, 
includes institutions, 
increasing over time 

169.5; increasing 
based on settlement 
size and income 

Ohaire 
(2015)  

Network Planner/ 
Columbia 
University 

Nigeria Settlements (low 
res) 

NS Grid, mini-grid 
(diesel), stand-alone 
(PV) 

NS Assumed, ignores 
institutions 

330 and 400  

Mentis et al. 
(2015) 

OnSSET/KTH Nigeria Grid (6.25 km2) AfDB (2011) Grid, mini-grid (PV, 
wind, diesel, hydro), 
stand-alone (PV) 

Grid corridor, 
electrification 
rate 

Assumed, derived, 
ignores institutions 

850 (rural)–1750 
(urban)  

Mentis et al. 
(2016) 

OnSSET/KTH Ethiopia Grid (6.25 km2) AfDB (2011)  Grid; mini-grid (PV, 
wind, diesel, hydro), 
stand-alone (PV) 

Grid corridor, 
electrification 
rate 

Assumed, derived, 
ignores institutions 

750 (rural)–1500 
(urban)  

Mentis et al. 
(2017) 

OnSSET/KTH Sub-Saharan 
Africa 

Grid (1 km2) AfDB (2011), 
OpenStreetMap 

Grid, mini-grid (PV, 
wind, diesel, hydro), 
stand-alone (PV) 

Nighttime 
illumination, 
population data, 
transmission 
grid, road 
network 

Assumed, ignores 
institutions 

All energy access 
tiers 

IEA (2017) Based on 
OnSSET 

Global Grid (1 km2) NS NS NS Assumed, ignores 
institutions 

250 (rural)–500 
(urban); increasing 
over time to reach 
the national average 

Moksnes 
(2017) 

OnSSET/KTH Kenya Grid (1km2) AfDB (2011), 
OpenStreetMap 

Grid, mini-grid (PV, 
wind, diesel, hydro), 
stand-alone (PV) 

Nighttime 
illumination, 
grid, roads, 
electrification 
data 

Derived, ignores 
institutions 

Low scenario: 43.8 
(rural)–423 (urban); 
high scenario: 423 
(rural)–598.6 (urban)  

Szabó et al. 

(2011)d 

ECJRC/RE2nAF Africa Grid (1km2)e Variety of 
sources 

Grid, mini-grid 
(diesel, PV) 

Electrification 

ratee 

Assumed 250 kWh–1,000 kWh 
(derived tier 2 and 

tier 4)f 

Szabó et al. 
(2013) 

ECJRC/RE2nAF Africa Grid (1 km2) Variety of 
sources 

Grid; mini-grid 
(diesel, PV, hydro), 
stand-alone (PV) 

NA Assumed 250 kWh–1,000 kWh 
(derived tier 2 and 

tier 4)f 

Moner-
Girona et al. 
(2016) 

ECJRC/RE2nAF Burkina Faso Settlements Burkina Faso 
Utility 

Grid; mini-grid (PV, 
hydro, diesel), 
stand-alone (PV) 

Rural 
electrification 
agency 

Derived, includes 
institutions 

200; increasing by 
4%/yr 
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Study Model/institution Country Population data 

Data source for 
location of 

existing grid 
Technologies 

assessed 

Locate 
electrified 
population Demand assessment 

Demand 

(kWh/hh/yr)a 

Deichmann 

et al. (2011)g 

World Bank Ghana, 
Ethiopia, 
Kenya 

Settlements NA Grid, mini-grid (PV, 
wind, diesel, PV-
wind, biodiesel), 
stand-alone (PV, 
wind, diesel) 

NA Assumed 1,440 

Levin and 
Thomas 

(2012)g 

NA 150 countries Settlement (high 

res) and grid (0.25°  

× 0.25°) 

NA Grid, mini-grid NA Assumed and derived 50–10,000 

Van Ruijven, 
Schers, and 
van Vuuren 
(2012)  

NA/PBL-Utrecht Brazil, India, 
Indonesia, 
South Africa, 
Eastern Africa 

Grid (0.5° × 0.5°) OpenStreetMap Grid, mini-grid 
(wind, diesel), 
stand-alone (PV) 

Grid corridor, 
electrification 
rate 

Assumed 65 - 420 

Dagnachew 
et al. (2017) 

NA/PBL-Utrecht Sub-Saharan 
Africa 

Grid (0.5° × 0.5°) OpenStreetMap Grid; mini-grid (PV, 
diesel, wind, hydro, 
hybrid), stand-alone 
(diesel, PV) 

Grid corridor, 
electrification 
rate 

Derived and assumed 
scenarios 

Derived: tier 3–tier 4; 
assumed: all energy 
access tiers 

Bertheau, 
Cader, and 
Blechinger 
(2016)  

Reiner Lemoine 
Institut/Berlin 

Nigeria Census data, 
polling data, 
schools data 

NA Grid, mini-grid, 
stand-alone 

Nighttime 
illumination and 
data on 
infrastructure 
(schools) 
electrification 
status 

NA NA 

Bertheau, 
Cader, and 
Blechinger 
(2017)  

Reiner Lemoine 
Institut/Berlin 

Sub-Saharan 
Africa 

Settlements AfDB, UN DESA 
and country 
ministries and 
agencies 

Grid, mini-grid, 
stand-alone 

Nighttime 
illumination and 
electrification 
rate 

NA NA 

Sahai (2013) NA Flores Island, 
Indonesia 

Settlement Local utility Grid, mini-grid (PV), 
stand-alone (PV) 

Derived from 
census 

Assumed (minimum 
defined by Indonesia 
power utility) 

Met by 350Wp SHS 

Zeyringer et 
al. (2015) 

NA Kenya Grid (500 km × 

500 km) 

OpenStreetMap Grid, stand-alone 
(PV) 

Grid corridor, 
electrification 
rate 

Derived 164–1,880 

Ellman 
(2015) 

Referene 
Electrification 
Model/MIT 

Vaishali 
District, India 

Arial photos and 
learning algorithm 

Local utility Grid, mini-grid (PV, 
diesel), stand-alone 
(PV, diesel)  

Grid corridor, 
electrification 
rate 

Derived ~220–400 

Notes: NS = not stated; NA = Not Applicable 
a Assuming 5 people per household where demand is stated per capita. 

b Not included in Figure 5 as they did not calculate the LCEM for 100 percent access.  

c Not stated in the published workings of the model. 

d Not included in Figure 5 as they did not provide explicit results comparing grid versus distributed generation. 

e Personal communication, Moner-Girona, January 15, 2019. 

f Based on the use of a 4–15 kW diesel generator, which can produce a maximum of 35 MWh to 130 MWh a year. It would give 30–140 households electricity at tier 2–4 (personal 

communication, Moner-Girona, January 15, 2019). 
g Not included in Figure 5 as they calculate the grid from scratch, ignoring any existing grid network. 
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CONCLUSION 

Based on the analysis presented here, it is clear that capacity to compare 

findings across models is limited and thus so is our capacity to interrogate the 

accuracy of these models. Furthermore, to the extent that we can make 

comparisons across models, there is significant variability both across models 

and across geographies. Given the sources of variance across LCEMs, there is 

valuable work to be done by modelers to quantify the sources of variability across 

models and develop better uniform proxies and computational logics, so as to 

generate more accurate, and therefore useful, models to support policy makers 

and advocates.  

The limited capacity to determine the accuracy of different models, as well as the 

variance in the model findings, suggests that policy makers and advocates 

should exercise caution when invoking model findings to advocate for specific 

investment targets around different technologies. While models are expected to 

be more accurate at the country level—owing to the availability of better-quality 

data—advocates using such models would be well advised to seek out the 

published results from multiple models or to consider multiple scenarios. For 

regional or global cases, they should exercise even greater caution considering 

the lower-quality data inputs and limited scope for triangulation. Given the 

variation across countries, any advocacy built around the findings from these 

regional or global models needs to pay close attention to the countries that 

constitute any finance or infrastructure portfolio to make sure they reflect the 

countries for which model results are published. In all cases advocates and 

policy makers should lean toward using models that publish their inputs and 

computational logic. This last recommendation speaks to a specific weakness of 

the IEA (2017) model, which is heavily cited despite publishing extremely limited 

information about its inputs.  

When considering the results of LCEMs and their implications for financing and 

infrastructure planning, it is important to remember that such models address 

only the cost of increasing capacity to achieve access. They ignore the costs of 

upgrading the grid for reliability and expanding capacity for industrial demand. 

These actions, while not necessarily a priority for increasing access, are central 

to achieving reliable industrial supply and integrating renewables onto the grid.  

With these caveats in mind, policy makers should seek to take advantage of the 

apparent spatial agreement among the models. This information can be useful 

for creating effective concessions in which distributed technologies are expected 

to be the cheapest technology because the small unit costs can be bundled to 

make them attractive to contractors. Further, such spatial specificity means that 

policy makers can assure private operators that in certain areas the grid will not 
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be rolled out and thus grid arrival will not threaten private generation efforts.28 

Both of these elements are real advantages of the current models. 

Finally, there are multiple actions that modelers could take to improve the quality 

of models or to advance our understanding of the sources and scale of variance 

across models. These include the following: 

1. Seek to improve the quality of the crucial data inputs in the models by 

focusing on 

a. Improved data on the geolocation of the existing grid, and 

b. Improved and standardized data on the capital costs of grid 

infrastructure and fuel costs. 

2. Sensitivity-test models using different inputs on existing grid extent—for 

example, comparing OSM and AfDB maps. 

3. Sensitivity-test models to different computational logics, comparing the 

use of population density (raster data) with settlements (point data). 

4. Research effective means for integrating clustering algorithms into 

LCEMs, and sensitivity-test the models to the use of different clustering 

algorithms.  

5. Test the accuracy of different grid expansion approaches, comparing, for 

example, the approach used in the Network Planner models and the use 

of a grid corridor. 

6. Explore opportunities to take advantage of cheap, remote computing 

resources to test the implications of adopting an iterative approach to grid 

extension and/or LCEM integration with grid optimization models.  

7. Increase the number of models using multiple time steps, and explore the 

impacts of using such time steps on the capital costs of renewable energy 

components.  

8. Include scenarios in models that allow for comparison across models 

(regardless of the specific inputs being used in the model) so that model 

variability can be assessed. Suggested values would be a fuel price of $1 

per liter and a tier 3 level of demand.  

9. Adopt a standard means of describing the parameters for assessing 

distributed energy generation so that any reader can assess the degree 

to which costs used are realistic or not.  

  

                                                
28 Although this approach clearly acknowledges a role for private actors in supplying electricity generation infrastructure, this 

report is not endorsing a simple private model of energy provision. Rather, it recognizes that there are expected to be 

increased possibilities for the private sector, although the exact relationship between the private and public sectors in 

supplying such generation is beyond the scope of this work. 
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APPENDIX: MODEL 

DESCRIPTIONS  

This appendix provides a brief description of each of the published results 

reviewed as part of this report. The narrative reviews are not systematic and are 

intended only as greater context for each of the publications reviewed. It is 

impossible to include the full workings of every model in this summary, and thus 

the reader is directed to the original publication for greater details. During this 

process of summary, it is possible that small errors have been introduced in the 

description of each model. If this is the case and the reader identifies an error, 

please contact Oxfam at the address provided within the foreword of this report.  

The publications are discussed in the order that they appear in Table 5, which  

clusters publications by the model they use, allowing for a more effective 

narrative account across the publications.  

Two of the models have been applied to a number of contexts  (see Table 5): the 

Network Planner model (Ghana, Kenya, Liberia, Nigeria, and Senegal) and the 

OnSSET model (Ethiopia, Kenya, Nigeria, sub-Saharan Africa, and global). Thus 

it is valuable to briefly discuss the logic of these two models. This appendix 

proceeds by describing each model in general terms and then identifying the 

publications that used this model.  

The Network Planner model comes out of the Department of Mechanical 

Engineering and the Earth Institute at Columbia University. The model uses 

actual electrification data from the utility as well as specific data on the location of 

existing grid infrastructure gleaned from different sources depending on the 

context being modeled.  

The Network Planner model begins by creating a demand map—a 

geographically explicit map of unmet demand for the geography being 

considered. This map is based on the aggregation of households into known 

settlements, which are then defined as a single point of demand. Next the model 

estimates the costs of meeting demand in every settlement based on the 

different distributed technologies being assessed (stand-alone PV, stand-alone 

diesel, diesel mini-grids, grid) by calculating the LCOE for each source. For 

stand-alone systems, this is simply the cost of suitably sized generation 

equipment divided by the demand that will be met by that equipment. For mini-

grid technologies, the model has to account for the distribution equipment 

necessary to carry electricity from the point of generation to households. This is 

estimated from a parameter called the mean household distance, which 

describes the average distance between households in a settlement, and 
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therefore the total distribution costs involved in connecting the settlement either 

to the grid or a mini-grid.  

The model computes the cost of grid electrification in two parts. First it calculates 

what it calls internal costs, which are non-transmission costs. These include the 

costs of equipment such as transformers, distribution costs (calculated the same 

way as for mini-grids), and generation costs. The internal costs of generation are 

then compared with the cheapest distributed generation option. If the distributed 

option is cheapest, then it is selected for the settlement. If, however, the internal 

cost of grid electrification is less than the cost of the distributed option, the 

second part of the grid cost—known as the external cost—is calculated. The 

external cost is the cost of connecting the settlement to the existing grid. This is 

calculated based on an estimate of the cost of extending the grid—represented in 

cost per kilometer—multiplied by the distance between the settlement and the 

existing grid. The external cost is then compared with the difference in cost 

between the cheapest distributed generation technology and the internal grid 

cost. If the external grid cost is less than the difference, the settlement is 

identified as grid connected. If the external cost of the grid is greater than the 

difference, then the distributed technology has the lowest LCOE for the 

settlement.  

The Network Planner is an established and elegant model for selecting the least-

cost electrification technology. That said, it suffers from the fact that it ignores the 

most remote and isolated populations that do not get registered in population 

data sets that geolocate existing settlements. Such populations would almost 

certainly be connected most cheaply by stand-alone systems. Furthermore, the 

model is sensitive to the mean household distance parameter, which is often 

untested. A test of the model’s network expansion heuristic shows that while 

being suitably accurate it does tend to slightly underallocate grid connections, 

especially among remote, isolated settlements (Abdul-Salam and Phimister 

2016). Finally, the Network Planner model fails to account for the fact that once 

the grid has been built (i.e., if a settlement is grid connected), this changes the 

cost of connecting other settlements to the grid because the grid has now moved. 

It also fails to account for the manner in which increased demand on the grid is 

likely to reduce generating costs.  

Parshall et al. (2009) applies the Network Planner model to Kenya. The model 

compares grid connections with diesel mini-grids and stand-alone PV (with a 

diesel generator at the market center to support productive loads).29 Because 

high-resolution settlement data were not available in the country, the model is 

resolved to the level of the “sublocation,” which typically represents populations 

of 5,000–15,000 people in an area smaller than 15 km2. The model includes 

                                                
29 Parshall et al. ignore hydro and wind because, at the time of writing, these potentials were not well understood.  
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schools and clinics that are known to exist in the sublocations and considers the 

grid extent in Kenya as of 2007.  

The authors use the model to estimate demand based on four categories, 

determined by the size of the population in a sublocation as well as average 

income. According to their calculations, demand ranges from a low of 310 kWh 

per household per year for domestic use and 50 kWh per household per year for 

productive use to a high of 1,750 kWh per household per year for domestic use 

and 360 kWh per household per year for productive use. Institutional demand 

ranges from 360 kWh per year for a small clinic to 15,000 kWh per year for a 

large boarding school.30 The model runs over a 10-year period and accounts for 

population growth. 

The model could not use population data to calculate grid costs because the data 

were not available at a suitably high resolution. Instead, the model builds 

infrastructure either to a known market center or to the middle of the sublocation. 

A further condition (applied to account for the fact that people are not evenly 

distributed across a sublocation but rather are organized in small clusters) was 

that households would be equally spaced over 20 percent of the sublocation. 

Furthermore, it was required that for any sublocation, 50 percent of the 

population had to be located within 300 meters of a transformer. This allowed the 

model to calculate the number of transformers necessary to connect the 

population of a sublocation to the grid or mini-grid. The model was further 

ground-truthed to make sure it delivered sensible results at a small scale.  

The model compares two electrification targets, both for 10 years in the future: 

(1) “realistic target” - 65 percent of the population connected in urban areas with 

30 percent connected elsewhere; and (2) “universal access” - 100 percent 

access. Under the realistic access scenario, the model connected 5,565 (out of 

the total 6,737) demand nodes to the grid. This translated into 41 percent of 

households being electrified most cheaply by the grid. For the universal access 

scenario, the model put 96 percent of households on the grid (6,002 demand 

nodes). The high proportion of grid-connected households is thought to be a 

result of Kenya’s current population distribution: 50 percent of Kenyans reside in 

3 percent of the country’s land and live at densities of more than 500 people per 

km2. More than 90 percent of the country’s population lives at population 

densities greater than 125 people/km2. 

 

 

 

                                                
30 Estimates were based on assessments of what demand in these centers looks like. 
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Table A1. Results from Parshall et al. (2009) 

Scenario 

% of households served by: 

Grid Mini-grid Stand-alone PV 

Realistic access 41 Not stated Not stated 

Universal access 96 Not stated Not stated 

 

Sanoh et al. (2012) applies the Network Planner tool to Senegal. The model is 

applied on top of a set of concessions into which the country has been divided as 

part of an effort to privatize electrification. Each concession includes 5,000–

10,000 customers, with the electrification status of different populations 

determined from a mix of sources, including the utility and the census. The model 

compares grid extension with diesel generators and solar PV, considering 

electrification targets over a 10-year period. It estimates demand from data 

detailing patterns of electricity use. The result is demand that varies based on the 

population size of any concession, from 73 kWh per year to 1,398 kWh per year 

for households, and from 223 kWh per year (clinic in small settlement) to 1,478 

kWh per year (school in large settlement) for institutions. Productive use ranges 

from 20 kWh per household per year in small settlements to 100 kWh per 

household per year in large settlements. The model accounts for future growth 

based on population growth (affecting both future domestic and institutional 

demand) and increasing productive use. The focus on increased productive 

demand is derived from historical assessments of Senegal showing that 

businesses have tended to connect to electricity when it has been made 

available. 

The model assumes that all urban areas (> 5,000 people) are electrified by the 

grid, and therefore all urban electrification is allocated to the grid through infilling 

with low-voltage lines. Overall the model produces a technology allocation in 

which 75 percent of households are connected to the grid, 18 percent are 

connected to stand-alone PV, and 7 percent are connected to diesel mini-grids. 

Table A2. Results from Sanoh et al. (2012) 

Indicator Grid 
Diesel mini-

grid 
Stand-

alone PV 

Number of additional households 
connected 422,448 37,170 102,206 

% of additional households connected 75.20 6.62 18.19 
Source: Derived from Sanoh et al. (2012) by adding 288,000 urban households that get connected to the grid 

(referenced on page 21) to the number of rural households connected to the grid (contained in Table 7).  

 

The model is notable for, again, allocating a large percentage of the population to 

the grid. Notably, this proportion falls if the model considers only rural 

electrification. In that case 49 percent of households are connected to the grid, 
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14 percent are connected to diesel mini-grids, and 37 percent are connected to 

stand-alone technologies. In the most sparsely populated regions, the grid is the 

cheapest means to connect only about 24 percent of the population. Such 

numbers show the large spatial variability of the least-cost technology. The study 

also highlights the differences in the per capita cost of connection across rural 

and urban areas and across technologies: the per capita cost of the urban grid is 

$409; the rural grid, $1,048; rural diesel, $850; and rural PV, $723. Sensitivity 

analysis on this study shows that the greatest scope for reducing cost comes 

from halving the price of grid connections; it also shows sensitivity to PV prices, 

though this is largely confined to rural areas (Figure A1). Overall, the sensitivity 

analysis shows the prominence of the grid across all cases examined, though 

this prominence is a result of the number of urban connections.  

Figure A1. Results of sensitivity analysis from Sanoh et al. (2012) 

 

Source: This visualization is derived from Sanoh et al. (2012). These results were unpublished but are compiled 

from published material.  
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Modi et al. (2013) models the Liberian energy sector using the Network Planner 

tool. The model does not use an overnight-build approach but instead considers 

three phases (a 5-year period, a 10-year period, and a final 15-year period) to 

2030. The aim of the model is to achieve 100 percent electricity access in urban 

areas and 70 percent access in rural areas.31 In Liberia the model was built on 

top of an excellent set of census data that covered the model needs for each 

settlement—geolocated point data on each settlement, along with information on 

settlement size. The model incorporates energy demand from schools and health 

centers but does not include market centers or public usage (street lights, 

government offices, police stations, etc.). The model does not account for 

connecting sites of planned mineral extraction to the grid—data for such sites 

were not available—even though the authors believe that such sites would be 

electrified most cost-effectively through grid connection. Data on existing grid 

infrastructure were gathered from the reports of different consultants and from 

the utility. Efforts were made to assess demand based on current usage patterns, 

but this was extremely difficult owing both to the general challenges of latent 

demand estimation and to the recent conflict in the country, which resulted in 

large amounts of unregistered auto generation, very high grid prices (which likely 

depress demand), and an overrepresentation of wealthy households among grid-

connected individuals. The model eventually settles on a scale of demand from 

300 kWh per household per year (in the smallest communities) to 2,400 kWh per 

household per year (in Monrovia), based on estimates of appliance use and 

workshops. The model accounts for increasing demand among connected 

households (2.34 percent per year) based on population growth as well as 

conversations with practitioners. It uses capital costs from recently completed 

projects or from actual costs of projects in other countries. A novelty of this model 

is that because of the electricity interconnection with Côte d’Ivoire and the 

existence of the grid in Monrovia, the model actually builds out the grid in two 

areas before eventually connecting them.  

The model finds that, after 30 years and achievement of 100 percent urban 

access and 70 percent rural access, 93 percent of households are connected to 

the grid, with the rest using distributed generation. That said, the model also 

notes the value of using small distributed systems to provide households with 

electricity access while the grid is being rolled out. To address the cost of 

connecting people twice, the model suggests that distributed systems should be 

built to half the capacity specified in the model. The model notes that because of 

its phased approach its accuracy is likely greatest for the first five years and 

decreases after that. Consequently it calls for updating the findings as 

electrification is rolled out.  

                                                
31 These goals are based on the goals of the Liberian government.  
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Even though the model aims for only a 70 percent rural electrification rate, it is 

notable for the high percentage of grid connections it predicts as cheapest. This 

is despite the highly dispersed nature of the Liberian population: 30 percent of all 

settlements have populations of fewer than 25 people, 65 percent have fewer 

than 100 people, and 99.9 percent have fewer than 5,000 people.  

Kemausuor et al. (2014) uses the Network Planner model to look at the case of 

Ghana, where it models the least-cost technology allocations for achieving 100 

percent electricity access by 2020 using 2010 as a base year. The model 

compares grid electrification, mini-grid diesel generators, and stand-alone PV 

(complemented by a diesel generator for productive use). Deriving demand as a 

function of population size and income, the model uses a base domestic demand 

of 150 kWh per household per year, with another 19.5 kWh per household per 

year for productive use. It is based on initial population densities and average 

household size and accounts for different rates of population growth in rural and 

urban areas. It also allows for greater demand from households located in more 

densely populated areas. The location of communities comes from 2000 census 

data, extrapolated to 2010 using population growth rates obtained from the 

Ghana Statistical Service (GSS). The GSS also provided data on the location of 

electrified settlements. The work assumes a mean standard household distance 

of 25 meters and includes allowances for electricity use by elementary and high 

schools (institutions larger than these were expected to exist only in already 

electrified areas).  

To achieve the least-cost electrification, the model allocates 85 percent of new 

connections to the grid,87 percent to mini-grids, and 7 percent to stand-alone PV 

(Table A3).  

Table A3. Results from Kemausuor et al. (2014) 

Indicator Grid 
Mini-grid 

diesel  
Stand-alone 

PV 

% of communities electrified by 
technology 85 8 7 

Total cost (US$) 591,220,000 57,648,000 46,537,000 

Cost per household (US$) 2,080 3,190 3,480 
Note: Kemausuor et al. (2014) applied the model to 2,600 communities.  

 

The model finds that a grid connection is the cheapest electrification option for a 

large share of communities, and the authors explain this outcome by pointing to 

Ghana’s relatively extensive grid and historic efforts focused on energy access. 

They also note that financing costs in the study are relatively high because they 

look at achieving energy access in only 10 years. They explain that expected 

cost declines in renewable technologies should lead to an increase in the uptake 

of distributed technologies.  
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Ohiare (2015) uses the Network Planner model to consider the least-cost 

electrification pathway in Nigeria to 2030, comparing stand-alone systems using 

PV and a diesel generator for productive use, a diesel-based mini-grid, and grid 

electrification. Because of a lack of data on population, the model operates at the 

scale of broad administrative areas. They consider 774 local government areas, 

treating each as a settlement and assuming them to be homogenous throughout, 

with an assumed mean household distance of 25 meters. The paper assumes 

average household demand is 330 kWh per household per year and considers 

distinct rates of population growth for urban and rural households, which drive 

increases in demand across settlements over time.  

The model shows that 98 percent of currently unconnected households would be 

most cheaply connected by the grid. Mini-grids account for the remaining 2 

percent of connections (Figure A2). The model makes clear that there is 

significant variation within the country with regard to technology allocation: the 

smallest role for grid connections is 65 percent in the most sparsely populated 

local government area. 

Figure A2. Results from Ohiare (2015): Technology allocation across 

multiple scenarios  

 

Source: Visualization derived from Ohiare (2015). 

 

The model then runs scenarios in which household demand is increased (to 400 

kWh per household), diesel prices are reduced (from $0.96 to $0.65 per liter), 
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and solar prices are reduced (by 250 percent32). Increasing household demand 

has the expected effect of pushing more people onto the grid. Notably a 

significant reduction in solar prices reduces the proportion of households for 

whom the grid is the cheapest option to 65 percent of households, with diesel 

mini-grids becoming the cheapest option for 34 percent. Lowering the prices of 

both diesel and solar drops the proportion of grid connections to 46 percent, 

while mini-grids move to 24 percent and stand-alone PV/diesel moves to 30 

percent (Figure A2). 

Again, the model is notable for allocating a large proportion of unelectrified 

households to the grid for least-cost electrification, even under a large decline in 

solar prices. This result is likely due to Nigeria’s high population density and also 

partly to the use of local government areas as the level of analysis, which omits 

details about highly isolated and remote settlements. Including such settlements 

would be expected to increase the role of stand-alone PV, although the numbers 

would likely be insubstantial.  

The OnSSET model is developed principally by the Royal Institute of Technology 

at Stockholm (KTH) along with other partners.33 The model is built on a gridded 

population density map34 that breaks down the region being modeled into evenly 

sized cells, with each cell allocated a number of people. The model then adopts a 

specific demand target and calculates the resultant demand for each cell.  

In terms of technology allocation, the model builds on a method developed by 

Fuso Nerini et al. (2016), which determines the LCOE for different technologies 

across a variety of relevant parameters,35 using standard estimates of capital 

costs for generators (see a longer discussion on Fuso Nerini et al. 2016 below). 

Notably, Fuso Nerini et al.’s model applies a constraint on the grid, assuming that 

no new HV transmission lines could be built cost-effectively. Thus the model 

limits the possibility for grid expansion to MV lines, which it assumes cannot be 

extended beyond 50 km from the existing grid. Only households within 50 km of 

the existing grid are liable to be electrified by a grid connection. For all of the rest, 

only distributed technologies are compared. For households that are identified as 

needing to be grid connected, the model uses a minimum spanning tree 

algorithm to connect all the cells along a single piece of infrastructure.  

                                                
32 This takes solar prices from $2,000/kW in the baseline to $500/kW.  

33 These partners are the United Nations Department of Economic and Social Affairs, the United Nations Development 

Programme, the World Bank, ASEA Brown Boveri, the International Energy Agency, the US National Aeronautics and Space 

Administration, the Swedish Research Council (Vetenskapsrådet), the Swedish International Development Cooperation Agency, 

and the Energy Sector Management Assistance Agency.  

34 Different publications use different resolutions. 

35 These include household demand, population density, distance to the grid (a maximum of 50 km), cost of electricity from the 

grid, availability of renewable resources (solar, wind, and whether hydro potential exists within 10 km of the settlement), 

whether a large-scale source of biomass exists within 10 km of the settlement, diesel price, and capital cost of generation 

technologies.  
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Based on these calculations, the OnSSET model then calculates the LCOE for 

each technology for each cell based on its characteristics: population density, 

desired level of access, distance from the grid, renewable resources, and fuel 

costs. To do so, it first considers the demand from each cell and compares this 

with Fuso Nerini’s (2016) reference calculations to determine whether the cell 

meets a minimum demand to warrant connection to the grid. This is done for 

each cell, with the distance from the grid increasing for each subsequent cell by 

the size of each cell, up to 50 km from the grid (owing to the limit placed on MV 

lines). Once one area is connected to the grid it becomes cheaper to connect a 

subsequent area, and the model accounts for this by iterating this process until 

no more cells can sustain a connection to the grid. The computational intensity of 

this process is limited by the assumption that the grid can be extended only by 50 

km.  

The model then considers all the remaining unconnected cells and calculates the 

LCOE for the variety of distributed technologies being assessed by the model, 

again using the cost calculations provided by Fuso Nerini et al. (2016). The 

model selects the technology with the lowest LCOE and matches it to the cell.  

The OnSSET model can effectively provide high-resolution data on where 

different technologies will prove to be least cost, and it does not suffer from the 

need for settlement data that drives the Network Planner model and causes it to 

ignore isolated households. The OnSSET model is also able to account for the 

fact that every time a household becomes grid connected, the cost of connecting 

a subsequent household decreases. Publications using the OnSSET model limit 

the length of grid extension to 50 km from existing infrastructure, limiting the 

scope for grid expansion. This parameter can be changed within the model, 

although doing so would raise greater computational challenges during the 

network optimization step of the model. Likewise, the model likely biases results 

toward distributed technologies because it considers whether any cell can 

sustain a grid connection before shifting to distributed technology. This approach 

means that the lowest-cost technology is not always chosen, but rather that the 

grid is chosen only if it can be sustained at a breakeven price, before more 

expensive distributed generation is chosen.  

Mentis et al. (2015) uses the OnSSET model to consider a scenario in which 

Nigeria achieves 100 percent electricity access by 2030. The model is built on a 

population density map composed of 2.5 km × 2.5 km cells; it uses demand 

levels of 350 kWh per capita per year for urban areas and 170 kWh per capita 

per year for rural areas.36 The model accounts for population growth, 

differentiating growth rates in rural and urban areas. It uses the AfDB 

infrastructure map to attain geolocated data on the spatial extent of the existing 

                                                
36 Assuming five people per household, this translates to 1,750 kWh per household per year in urban areas and 850 kWh per 

household per year in rural areas. This is tier 4 access for urban areas and tier 3 access for rural areas, according to the 

World Bank Multi-Tier Framework.  
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grid infrastructure. The model determines the location of the (un)electrified 

households by overlaying the geospatial grid on top of the population density 

map and assumes that all of the electrified population (derived from the 

electrification rate, according to the IEA) live next to the grid. It builds a buffer 

around the existing grid until that buffer covers the number of people identified as 

having electricity access in Nigeria. The grid is then expanded to connect all 

planned power stations, as well as future mines (which are identified from United 

States Geological Survey data).37 These connections are undertaken using MV 

power lines where possible and HV lines where necessary. Outside of extending 

the grid to planned power stations and mines, the model limits grid extension to 

within 50 km of the existing grid.  

The model considers the following technologies: stand-alone PV; stand-alone 

diesel; PV, wind, hydro, and diesel mini-grids; and the grid. Diesel fuel costs 

come from the national price plus the cost of transporting fuel to the cell, 

determined based on travel time data from the nearest city provided by the 

European Joint Research Center. Wind and solar energy potentials are taken 

from the International Renewable Energy Agency (IRENA). A lack of data on 

hydroelectric potential is addressed by using hydrological potential, which is 

aggregated at the level of Nigerian states.  

The model finds that 85.6 percent of unconnected households in Nigeria would 

be most cheaply connected by the grid, 14.3 percent by mini-grids, and 0.3 

percent by stand-alone PV. Among the mini-grids, diesel dominates, followed by 

PV. Small hydro, wind and stand-alone systems play almost no role. Among 

stand-alone systems, diesel marginally dominates (Table A4).  

Table A4. Results from Mentis et al. (2015) 

Indicator Grid 

Mini-grid Stand-alone 

Diesel PV Wind Hydro Diesel PV 

% of households 

connected by technology 

85.60 7.97 4.78 ~ 0 1.56 0.16 0.13 

 

The model is further sensitivity-tested by varying rural demand to as low as 150 

kWh per capita per year and as high as 190 kWh per capita per year.38 The 

impact on results is small (Table A5). 

Table A5. Sensitivity test from Mentis et al. (2015)  

Rural demand level 

% of households connected by: 

Grid (%) Mini-grid (%) Stand-alone (%) 

                                                
37 This is done to reflect that such infrastructure development forms part of the AfDB’s infrastructure planning (Mentis et al. 

2015). 

38 These levels are equivalent to 750 and 950 kWh per household per year.  
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150 kWh per capita per year  85.49 13.50 1.01 

170 kWh per capita per year 
(baseline) 

85.66 14.04 0.30 

190 kWh per capita per year  85.90 13.97 0.13 

Note: Urban demand is held constant at 350 kWh per capita per year. 

 

The model is notable for producing a large amount of grid connections and 

suggesting a very small role for wind and hydro. Considering the 50-km limit on 

grid connections, the large number of grid connections produced by the model 

indicate the extent to which the Nigerian population resides in close proximity to 

the existing grid infrastructure.  

Finally, this model is based on capital costs used by Fuso Nerini et al. (2016) that 

precede the recent steep declines in solar components (F. Fuso Nerini, personal 

communication, March 13, 2018). The precise impact on the technology 

allocation of using reduced PV and battery prices is not clear, but one would 

expect that distributed technologies would become the least-cost option both 

closer to the grid and at higher levels of demand.  

Mentis et al. (2016) use the OnSSET model to repeat the analysis in Ethiopia. 

The only slight differences in the analysis are that rural demand is set at 170 

kWh per capita per year, while for urban areas it is 300 kWh per capita per 

year.39 Further, hydroelectric potential is estimated based on an assessment of 

elevation, river locations, and streamflow characteristics.  

The results of the model allocate 93.4 percent of the newly connected population 

to the grid, 5 percent to mini-grids, and less than 1 percent to stand-alone 

systems (Table A6). Further, the mini-grid systems are again dominated by 

diesel and PV, with wind and hydro playing a very small role. The split between 

diesel and PV is almost equal in the case of stand-alone systems.  

 

Table A6. Results from Mentis et al. (2016) 

Indicator Grid 

Mini-grid Stand-alone 

Diesel PV Wind Hydro Diesel PV 

% of households 
connected by technology 93.41 1.37 0.95 0.3 0.66 0.23 0.27 

 

                                                
39 Assuming five people per household, this translates to 850 kWh per household per year for rural areas and 1,500 kWh per 

household per year for urban areas. This is tier 3 access for rural areas and tier 4 access for urban areas, according to the 

World Bank Multi-Tier Framework. 
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The results are again sensitivity-tested—this time against a single scenario in 

which rural demand is dropped to 50 kWh per capita per year.40 The result is an 

equal shift of about 5 percent each from the grid and mini-grid systems to stand-

alone systems (Table A7).  

Table A7. Sensitivity test from Mentis et al. (2016), comparing grid, mini-

grid and stand-alone technologies, across baseline and low-demand 

scenarios 

Scenario 

% Households connected % Financing cost 

Grid Mini-grid Stand-alone Grid Mini-grid Stand-alone 

Baseline 93.41 5.65 0.94 83.21 15.2 1.59 

Low Demand 88.9 0.35 10.75 NA NA NA 
Note: The Baseline scenario is the same as Table A6 grouped to reflect how findings were published. Percent 

of financing costs were published for this model and are included here for completeness sake.  

The model again produces high allocations to the grid, even considering 

significantly lower rural demand. This result is even more notable given the 

currently low access rates in Ethiopia (26 percent overall and only 10 percent in 

rural areas).  

Mentis et al. (2017) then applies the OnSSET model to consider all of sub-

Saharan Africa. The model’s parameters are updated in an attempt to increase 

its accuracy. Changes include (1) increasing the resolution of the population 

density map to 1 km × 1 km, (2) modifying grid expansion costs by a factor to 

account for the increased cost of building the grid in challenging terrain or far 

from roads, (3) including proximity to coastlines when estimating the diesel price, 

and (4) updating the capital costs to better reflect the recent cost declines in 

renewables. Instead of identifying the unelectrified population through the use of 

energy access rates and proximity to the existing grid, the model uses nighttime 

illumination data to identify electrified areas. The model also undertakes a slightly 

different evaluation, considering all of the different tiers of energy access, 

applying them homogenously across rural and urban populations as different 

scenarios. The model further considers two scenarios regarding the global price 

of diesel (low price = $47 a barrel; high price = $113 a barrel41).  

The results show that for a tier 3 level of access (a measure comparable to that 

used in other models), the proportion of the population most cheaply connected 

to the grid lies between 44 and 61 percent, depending on the diesel price, with 

increased diesel prices resulting in a larger role for the grid. At a tier 3 level of 

access, the model connects between 5 and 7 percent of households to mini-grids 

and between 35 and 49 percent of households to stand-alone technologies. In 

                                                
40 This is equivalent to 250 kWh per household per year, or the IEA minimum for rural areas.  

41 These prices are taken from the IEA new policies scenario (IEA World Energy Outlook 2015). 
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both cases the proportion of the population served by distributed systems 

declines as diesel costs increase. The results are summarized in Figure A3. 

Figure A3. Results from Mentis et al. (2017): Technology allocation across 

demand tiers and oil price scenarios 

 

Source: The graph is derived from Mentis et al. (2017). Rounding errors cause certain scenarios not to sum to 

100.  

 

The results also illustrate that diesel dominates the distributed technologies in all 

cases where oil prices are low, with mini-grids playing a larger role under higher 

demand scenarios. At high oil prices, PV is the dominant source of distributed 

generation in all cases, with the role for mini-grids again increasing at high levels 

of demand. 

The model results make clear how increasing demand shifts technology 

allocations from stand-alone (80 percent of connections at tier 1, regardless of 

the diesel scenario) toward the grid (68–78 percent of connections at tier 5, 

depending on the diesel price). Again, the model predicts a very limited role for 

distributed wind and hydro despite their low costs and shows a relatively limited 

role for mini-grids.  

The International Energy Agency (2017), in its special report Energy Access 

Outlook 2017, models the entire unconnected population globally. It does not 
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publish the workings of the model in comprehensive form,42 but it does refer to 

collaboration with KTH Royal Institute of Technology43 (which developed the 

OnSSET model, results for which are published by Mentis et al. 2015, 2016, 

2017 and Moksnes et al. 2017). The IEA also notes that its analysis of sub-

Saharan Africa takes place at the level of 1 km2—the same as that used by 

Mentis et al. (2017). In its discussion of methodology, the IEA points out that the 

model, which runs to 2030, accounts for population growth, economic growth, 

urbanization rates, and the availability and price of different fuels. It considers 

decreasing technology costs, but it does not assume any technological 

breakthroughs. It assumes rural demand of 250 kWh per household per year and 

urban demand of 500 kWh per household per year, though these are set to 

increase to national averages. The published results from this analysis do not 

show the proportion of people to be connected by each technology based on 

least cost, but rather the proportion of financing that needs to flow to grid, mini-

grid, and stand-alone. Although not stated explicitly in the methodology, the 

report mentions solar PV, wind, hydropower, and diesel technologies for mini-

grids as well as diesel and solar PV for stand-alone systems. Again, these are 

the same as the technologies considered within the OnSSET model. It is not 

clear whether the IEA limits grid extension to within 50 km of the existing grid.  

The results of the model show that, following a least-cost approach, investments 

should be made in the following proportions: 25.6 percent to stand-alone, 41.6 

percent to mini-grids, and 32.7 percent to the grid. Based on figures presented in 

the report, we can estimate the proportion of people connected by different 

technologies44: approximately 26 percent to stand-alone, 35 percent to mini-

grids, and 39 percent to the grid (Table A8).  

  

                                                
42 Current information on methodology is limited to IEA (2017b); our emails to the IEA requesting more information have gone 

unanswered. 

43 This reference is as follows: “The geographic analysis of the type of access that contributes to electrification pathways has 

been developed in collaboration with the KTH Royal Institute of Technology, Division of Energy Systems Analysis (KTH-

dESA) in Stockholm, Sweden. (pp.6 – page numbers not explicit in document)” 

44 This is estimated by combining the numbers from Figure 2.5 (p. 50) and Figure 2.7 (p. 53) from the Energy Access Outlook 

(2017) Energy Access Outlook 2017: From poverty to prosperity, World Energy Outlook Special Report, Paris, France: 

International Energy Agency. 
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Table A8. Results from IEA (2017) 

Indicator 

Technology 

Grid Mini-grid Stand-alone 

% of financing flowing to 
technology 32.69 41.55 25.76 

% of people connected by 
technologya 39.15 34.88 25.97 

a Estimated from figures in IEA (2017). See footnote 14. 

 

What is notable in the findings from the IEA model is the smaller role for the grid 

and the much larger role for mini-grids. Such findings are even more surprising 

given the extent to which the IEA model is based on the OnSSET model and the 

fact that the IEA model uses lower levels of demand than was used in the 

OnSSET model for sub-Saharan Africa – though these do increase to the 

national average. One potential explanation could be that higher population 

densities in Asia drive larger numbers of mini-grid connections, though no 

explanation is provided in the model.  

Moksnes et al. (2017) applies the OnSSET model to consider the least-cost 

electrification pathway for Kenya. The model is built on top of the 1 km × 1 km 

population data set that informs the IEA and the sub-Saharan Africa models 

produced by Mentis et al. (2017). Like other OnSSET models, the model 

considers the grid, mini-grids (wind, hydro, PV, diesel), and stand-alone (PV, 

diesel) technologies. Finally, the model uses current capital costs for renewables, 

and thus those costs reflect the recent cost declines for renewables.  

The model runs a high- and low-demand scenario. The low-demand scenario 

assumes rural demand of 43.8 kWh per capita per year and urban demand of 

423 kWh per capita per year. For the high-demand scenario, rural demand is 

423.4 kWh per capita per year and urban demand is 598.6 kWh per capita per 

year.45 Note that for the low-demand scenario, this translates into a tier 2 level of 

demand in rural areas, while in urban areas it is a high tier 4 level of demand. For 

the high-demand scenario, this equates to high tier 4 in rural areas and tier 5 in 

urban areas. These numbers are derived from the Kenyan Power Generation 

and Transmission Master Plan. Like other iterations of OnSSET, the model 

accounts for population growth as a source of increased demand. 

The study innovates, however, by using the output from the OnSSET model to 

drive another model (the OSeMOSYS model), which is used to determine the 

grid price for Kenya by considering the country’s broader electricity development 

                                                
45 These rates are equivalent to the following rates per household per year: low demand, rural areas, 219 kWh; low demand, 

urban areas, 2,115 kWh; high demand, rural areas, 2,117 kWh; and high demand, urban areas, 2,993 kWh. 
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ambitions and optimizing the grid.46 In this setup, the OnSSET model uses a 

current grid price of $0.125 per kWh to determine the split between grid 

connections and distributed generation. The increased demand on the grid that 

derives from the new grid connections is then fed back into the OSeMOSYS 

model, which considers the available resources in Kenya, as well as the national 

demand profile and energy expansion plans, to determine an updated grid price. 

This price is then fed back into the OnSSET model to see how it affects further 

grid connections. This process is repeated only one time. The result is a grid 

price of $0.08 per kWh across both the high and low demand scenarios. The 

model also innovates by identifying unelectrified populations, which it derives 

from a mix of nighttime illumination data and geolocated road and grid 

infrastructure data, along with the national electrification rate.  

The results from the model show that for both the low- and high-demand 

scenarios, grid connections dominate, but only by a small margin in the low-

demand scenario, where the grid accounts for 53 percent of new connections 

(Table A9).47 In the high-demand scenario, the grid connects 90 percent of the 

population. Mini-grids play no role in the low-demand scenario, while stand-alone 

diesel and PV systems both make significant contributions. The authors point out 

that diesel dominates in areas near roads and cities, while PV dominates in more 

remote regions as transport costs increase. For the high-demand scenario mini-

grids dominate the distributed technologies, with diesel mini-grids playing the 

largest role. 

Table A9. Results from Moksnes et al. (2017) 

Scenario 

% of population connected by technology 

Grid 

Stand-alone Mini-grid 

Diesel PV Wind Diesel PV Hydro 

Low demand 53.40 27.30 19.29 0.00 0.00 0.00 0.00 

High 
demand 90.40 0.55 1.68 0.02 7.30 0.00 0.06 

 

The authors test the sensitivity of the model to changes in the discount rate, 

shifting it from 9.8 percent to 5.75 percent. Doing so changes the on-grid 

generation technologies articulated in the OSeMOSYS model (away from low-

capital, fuel-based systems toward high-capital, renewable systems). However, 

the authors do not describe any impact on the technology choices aimed at 

achieving access (i.e., the technology allocation described by the OnSSET 

model). The authors further examine the impacts of reducing the grid cost from 

                                                
46 A full assessment of the OSeMOSYS model is beyond the scope of this work; readers are directed to the original Moksnes et 

al. (2017) paper for further details on its functioning and accuracy.  

47 The numbers for this table had to be obtained from the author because they are not published in the paper (N. Moksnes, 

personal communication, April 30, 2018).  
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$0.125 to $0.08 per kWh: in the high-demand scenario, reduced prices result in 

an increase of 1.22 million people to the grid, and in the low demand scenario, an 

increase of 1.67 million people. Based on this finding, the authors note that the 

model underestimates grid connections owing to the limited number of iterations 

between the OnSSET and OSeMOSYS models. More iterations would serve to 

drive down grid prices further and therefore increase grid connections. 

The paper is notable for the large differences it produces when comparing high- 

and low-demand scenarios. The demand levels modeled are both on the high 

and low end of the scale compared with other models assessed in this report. 

Regardless of issues of demand, however, the model suggests that the role for 

mini-grids is low to nonexistent in the low-demand scenario.  

Having discussed the Network Planner and OnSSET models, this appendix 

proceeds to discuss the remaining individual publications of model results 

considered in this work.  

Szabó et al. (2011), as the first geospatial model generated at the continental 

level, adopts a simple mapping approach to estimate the distribution of different 

technologies across all of Africa. The approach does not constitute a dynamic 

model, but sets a specific price for electricity (€0.3 per kWh) and then maps 

which technologies can achieve this price in which geographies. As a result the 

model does not produce a proportional split in the number of connections per 

technology, but instead produces a map showing which technologies are capable 

of providing electricity at a plausibly affordable price (Figure A4). This map is 

complemented by a table that describes the number of people who could be 

connected to each technology at a price below €0.3 per kWh. Subsequent 

correspondence revealed that this was calculated based on a 1 km2 population 

grid (M. Moner-Girona, personal communication, January 15, 2019). 

The approach considers grid extension, diesel generation, and solar PV. 

Technically, the approach is a comparison only between the grid and mini-grids 

because the costs of metering and distribution lines are thought to be common 

across technologies. The analysis does not estimate population density or 

demand, but rather estimates cost in the following way. For the grid, the model 

simply assumes that all households within 90 km of the grid could be connected 

for less than €0.3 per kWh. The authors attained geospatial information on the 

grid from a number of sources: free web sources, databases, regional institutes, 

and individual experts. They point out that despite these efforts the database is 

incomplete, unevenly covering 33 of the 48 countries. For solar PV and diesel, 

the model determines the LCOE by considering only the cost of generating 

electricity from generation sources of a particular capacity; this is the non-

demand approach to estimating LCOE described at the start of the report. For 
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example, for solar PV the analysis considers a 4 kWp–15 kWp system.48 It places 

further requirements on the system: demand will consist of one-third daytime use 

and two-thirds evening use, and the system is designed with a battery so as not 

to fail on more than 5 percent of days. The analysis then works out the LCOE of 

energy from such a system, dividing its costs by the energy it will produce. The 

same approach applies to diesel, where the analysis considers diesel generators 

of between 4 and 15 kW and determines the LCOE based on the efficiency of the 

system, capital costs, fuel costs, O&M, discount rate, and system lifetime. Fuel 

costs vary by distance to the nearest town. The results of the analysis are shown 

in Figure A4.49  

Figure A4. Results from Szabó et al. (2011): Areas in which different 

technologies can supply electricity at €0.3/kWh  

 

Source: Szabó et al. (2011, 63).  

 

                                                
48 Based on this peak level, and an assumption that each generator would serve 30–140 households with each generator 

producing 35–130 MWh per year, the model implicitly assumes that household demand will be between 250 and 1,000 

kWh per year (tiers 2–4) (M. Moner-Girona, personal communication, January 15, 2019).  

49 The authors also undertake this analysis for a price of €0.25 per kWh, not shown here. 
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Szabó et al. (2013) builds on the above analysis, again considering Africa but 

generating a dynamic model that determines the least-cost technology. The 

model is built on top of a 1 km × 1 km population grid and compares the grid, 

hydroelectric mini-grids, stand-alone PV, and stand-alone diesel. The updated 

model accounts for recent cost declines in solar modules; uses new diesel 

prices; uses hourly, rather than daily, insolation data; and assumes all planned 

grid extension has been completed. The analysis again considers travel time to 

nearby towns in order to determine diesel prices and uses an oil price of $85 a 

barrel, which produces similar electricity prices to the 2011 analysis. The authors 

attempt to update the georeferenced electricity grid data, but again they note that 

the data set remains incomplete, with uneven coverage among the 48 countries 

in sub-Saharan Africa.  

Like the 2011 analysis, the model does not consider any sort of demand estimate 

but rather calculates LCOE based on generator size. For solar PV, this is a 15 

kWp system, supporting a load profile of two-thirds in the evening and one-third in 

the daytime, designed to fail on not more than 5 percent of days.50 For diesel, the 

method considers diesel generators of 4–15 kW. For mini-hydroelectric, no 

database is available for Africa, and so the model derives suitable sites by 

combining a digital elevation model and data on mean annual river discharge. 

The system is sized to be at least equal in capacity to the energy produced by 

the 15kWp PV system. Because the system has the advantage of continuous 

production, the LCOE is just below €0.15 per kWh. The LCOE for mini-hydro in 

any given pixel51 is then calculated by adding the LCOE of generation with a cost 

for connecting that pixel to the hydro generator, based on its distance from the 

generator. This cost is based on a standard amount: €0.025 per kWh per km. For 

the grid, the LCOE is calculated in a manner similar to hydro, with the cost of 

generation coming from World Bank data on electricity tariffs in each country, 

and a uniform cost of grid extension of €0.025 per kWh per km. The LCOE for 

each pixel is then the cost of generation plus the cost of connection.  

Notably, the results of the model do not look at the process of connecting 

currently unconnected households, but rather at what the technology distribution 

would be if everyone were connected using the technology with the lowest 

LCOE. As a result the model overestimates the number of grid connections; if the 

model considered only those populations that had yet to be connected, all the 

populations that are currently grid connected would be ignored. The results show 

that, based on 2012 prices, 34 percent of people will be connected to solar PV, 

15 percent will be connected to diesel generator, 12 percent will be connected to 

                                                
50 Based on this peak level, and an assumption that each generator would serve 30–140 households with each generator 

producing 35–130 MWh per year, the model implicitly assumes that household demand will be between 250 and 1,000 

kWh per year (tiers 2–4) (M. Moner-Girona, personal communication, January 15, 2019). 

51 The paper does not make clear the resolution at which calculations take place, with different input data sets having different 

resolutions.  
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mini-hydroelectric, and 39 percent will be connected to the grid (derived from 

Figure 9, p. 507).  

Compared with other assessments, these results are significant for the relatively 

small role they suggest for the grid and the large role they suggest for hydro. 

Such results are even more remarkable when one considers that they 

overestimate the grid contribution for the reason just described, and they use 

renewable component costs from 2012, whereas more recent models indicate a 

larger role for the grid using lower prices. It is difficult to explain why these 

findings differ so substantially from the rest of the literature. The only obvious 

explanation is the use of a relatively low discount rate (5 percent), which likely 

skews the model toward distributed systems.  

Moner-Girona et al. (2016) models the least-cost electrification pathway for 

Burkina Faso. The model is built on settlement data retrieved from the national 

statistical agency and draws data on the location of existing and planned grid 

infrastructure from a number sources in Burkina Faso. The model compares the 

following technologies: grid, hydropower mini-grid, PV mini-grid, stand-alone PV, 

and stand-alone diesel. For stand-alone diesel, the model accounts for the costs 

of transporting diesel from the nearest town. The location of electrified 

settlements comes from the utility, although these data do not include information 

on which households in those settlements are connected to the grid (M. Moner-

Girona, personal communication, October 16, 2018). Data on demand are poor 

in the country, so the model assumes demand of 40 kWh per capita per year52 

with a 4 percent annual increase. It assumes a demand profile in which one-third 

of electricity is consumed during the day and two-thirds are consumed in the 

evening. PV systems are built based on this demand profile and sized to fail on 

not more than 5 percent of days per year. The model also accounts for demand 

from social infrastructure, which also increases but has a demand profile 

opposite to that of residential users. For hydro systems, the model derives 

suitable hydro sites from digital terrain data as well as data on stream 

characteristics and catchment size.  

The model works by calculating the cost of distributed generation for a grid of 1 

km × 1 km cells across the entire country. The model selects the least-cost 

technology, considering capital costs, diesel price (including the transport price), 

availability of the renewable resource, the cost of generation from hydro 

(estimated at €0.15 per kWh), and the distance of the cell from the nearest 

potential hydroelectric source (which is multiplied by a cost for grid extension 

estimated at €0.025 per kWh per km). The cheapest technology is then 

compared with the cost of access via the grid, which is calculated based on the 

distance of the cell from the grid and the cost of undertaking that extension 

                                                
52 This level is equivalent to 200 kWh per household per year.  
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(estimated at €40,000 per km, based on real assessments of other projects in 

Burkina Faso). The least-cost technology is then selected.  

The model finds that 60 percent of the population living in nonelectrified 

communities are most cheaply connected by distributed generation. Notably, all 

of these connections are established via PV systems, with no role for hydro or 

diesel. When the model considers whether demand at each center will effectively 

be greater than can be supplied by a 15 kWp system (which is used to define 

mini-grids), it finds that 98.4 percent of PV connections are most effectively 

provided by mini-grids.  

Table A10. Results from Moner-Girona et al. (2016) 

Indicator 

Technology 

Grid 

PV mini-

grid 

PV stand-

alone Diesel Hydro 

% of unelectrified population 

connected by technology 

40.00 59.04 0.60 ~ 0 ~ 0 

 

The model is notable for the large percentage of connections to distributed 

generation and the large role for mini-grids—a result that is especially surprising 

given the low demand used—as well as for the negligible role for diesel systems. 

The large role for distributed connections can be explained in part by the very low 

level of demand (40 kWh per capita per year), which is lower than the rural 

minimum standard set by the IEA (and is equivalent to tier 2 in the World Bank 

Multi-Tier Framework for measuring energy access). Furthermore, the model 

uses only a 5 percent discount rate for finance—the lowest rate of any of the 

models assessed.53 The unpublished sensitivity tests to increasing the discount 

rate had large impacts on the allocation of technologies (M. Moner-Girona, 

personal communication, October 16, 2018). At the same time, however, it 

should be noted that this model does not include the generation cost from the 

grid. Including this cost reduces the role of the grid to almost nothing, because 

grid tariffs in Burkina Faso are high, around €0.21 per kWh (M. Moner-Girona, 

personal communication, October 16, 2018). When calculating mini-grid 

suitability, the model does not include any of the costs of distribution. Rather it 

simply allocates mini-grids based on the amount of demand generated by a 

settlement. Finally, the surprisingly small role for diesel is thought to be due to 

the high cost of diesel in Burkina Faso. Moreover, the study was undertaken at a 

time when global petroleum prices were high.  

The model undertakes sensitivity testing for the following scenarios: (1) 

household load dominates the settlement demand profile, (2) 10 percent of the 

                                                
53 This low rate was used because it was the cost of finance being supplied by the European Development Bank when 

providing climate finance (M. Moner-Girona, personal communication, October 16, 2018).  
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load in the settlement demand profile is due to social infrastructure, while 

household load makes up the remainder, (3) productive uses are included so that 

the load profile is 40 percent productive, 10 percent social, and 50 percent 

household, (4) a universal access scenario in which demand increases only in 

unelectrified settlements, and (5) a high-demand scenario in which demand 

increases to 110 kWh per capita per year in electrified settlements and to 40 kWh 

per capita per year in settlements without access to electricity. The results are 

shown in Figure A5 (these results pertain to the total coverage of the population 

once 100 percent electrification has been reached, not the proportion of the 

newly connected population, which is given in Table A10). 

Figure A5. Results from Moner-Girona (2016): Sensitivity test on least-cost 

technology allocation for Burkina Faso 

 

Source: Derived from Moner et al. (2016). 

 

Deichmann et al. (2011) models energy systems across Ethiopia, Ghana, and 

Kenya. The authors compare grid extension with stand-alone (solar PV, wind, 

and diesel) as well as mini-grid (diesel, wind, solar PV–wind, and biodiesel) 

technologies. The model is built on settlement data, with each settlement treated 

as a demand node. It assumes one high static level of demand across all 

households—120 kWh per household per month (1,440 kWh per year), which is 

on the low end of tier 4 access. The model does not focus on unelectrified 

settlements but rather determines the electrification pathway as if the entire 
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population were unconnected to start with—i.e., the model builds the grid from 

scratch. 

The model works by seeking to connect the largest demand centers to one 

another.54 Once a demand center is connected, it is assumed that every 

settlement within 120 km of that demand center can be serviced by LV power 

lines. The model continues to connect demand centers until every settlement in 

the country is covered by the grid. To address the computational problems of 

network optimization, the model deploys a variation of Prim’s algorithm to solve 

for a minimum spanning tree based on a “greedy algorithm” by which the 

connection with the highest “payoff” is selected (minimizing distance and 

maximizing the number of people connected). The model then proceeds to 

connect every settlement, in order of decreasing “payoff.” By calculating the cost 

of connecting each additional settlement, the model derives the marginal cost of 

grid extension (which rises as increasingly distant and less populated settlements 

are connected).  

The model then calculates LCOE for all demand nodes for all of the distributed 

technologies considered by the model (however calculations are done for wind 

only if the wind resource at a demand node meets a minimum threshold). The 

model then compares and selects the distributed generation source with the 

LCOE in every settlement. This LCOE is further compared with the marginal cost 

of connecting a given settlement to the grid, with distributed generation sources 

being selected when the LCOE is below the marginal cost.  

It is important to note that this model does not calculate the LCOE for currently 

unconnected households, but rather a theoretical number regarding the 

proportion of people who would be connected if the system started from scratch. 

The model is therefore likely to overestimate the number of grid connections, 

because many of the grid connections identified by the model describe 

households that are already connected to the grid. Moreover, this model does not 

seem to account for the fact that the optimally designed grid network generated 

by the first run of the model will interact with the technology allocation. Thus the 

model is liable to produce a suboptimally designed grid network that would 

increase grid costs and possibly misallocate demand centers to the wrong 

technology.  

The model only compares mini-grids with stand-alone systems, generating lower 

LCOEs for mini-grids based on lower capital costs per kWh produced. 

Deichmann et al. does not appear to include information on how distribution 

costs were accounted for in mini-grids or whether they were excluded for stand-

alone systems. The approach adopted in this model is not concerned with the 

                                                
54 The model actually bases this initial process on connecting existing generation infrastructure (though it ignores transmission 

infrastructure), where the number of generation points is fewer than the number of demand nodes. For details, see 

Deichmann et al. (2011).  
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extent to which demand is actually met by the system, and thus mini-grids 

produce lower prices than stand-alone systems across the board. No information 

could be gleaned from the model publication stating whether household demand 

profile was assessed, what level of reliability was assumed, or how batteries 

were sized (other than to note that storage costs were accounted for). The 

authors were contacted about this, but they did not respond.  

Finally, the model considers how cost declines might affect the allocation of 

technologies by assessing historical learning rates for renewables and 

anticipated future demand over a 20-year period. Applying such cost declines 

results in a significant shift away from the grid when compared with stand-alone 

technologies, where wind and solar become much more prominent. Although 

learning results in cost reductions for mini-grids, it does not change the 

proportion of households served by different technologies; wind mini-grids 

continue to dominate. The results from Deichmann et al. (2011) are summarized 

in Figure A6.  

Figure A6. Results from Deichmann et al. (2011): Least-cost technology 

allocation for Ethiopia, Ghana, and Kenya

 

Source: Derived from Deichmann et al. (2011). 

 

There appears to be a conflict across the findings described in this publication. 

Within the body of the report, the report notes that wind mini-grids are 
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competitive in Ethiopia, supplying 34 percent of households (p. 18). The full data, 

however, published in Appendix 2 (pp. 50–51) show that wind mini-grids are the 

cheapest source for every settlement in which wind is available. Summing these 

settlements reveals wind as the cheapest energy source for 62 percent of 

households (as shown in Figure A6). This is the only conflict between the 

findings discussed in the body of the report and the data published in appendix, 

and although the authors were contacted about this discrepancy, they have not 

responded.  

Despite such contradictions, these findings are notable for the large role they 

ascribe to wind. This result is especially remarkable given that other models 

explicitly find a limited role for wind because it is located too far from most 

settlements to be useful. Again, the authors were contacted for an explanation, 

but no response was forthcoming.  

Levin and Thomas (2012) seeks to model 150 countries around the world, with 

a specific focus on case studies in Bangladesh, Botswana, and Uganda, looking 

at the split between grid connections and distributed generation. This ambitious 

model is built around a set of algorithms that solve the computational problems 

regarding how to build electricity infrastructure. Like the Deichmann et al. (2011) 

model, this model does not look at the technology allocation for connecting the 

currently unconnected population, but rather models the whole country from 

scratch—i.e., assuming no grid infrastructure is in place. Again, this means that 

the model is likely to provide higher estimates for grid connections than does a 

model that considers only the unconnected population.  

The model is based on an algorithm that seeks to connect settlements, with a 

focus on optimizing size and proximity—i.e., the densest and nearest settlements 

are connected first. This process is done until a set proportion of the country is 

connected to the grid. Next the model runs an algorithm that solves the minimum 

spanning tree problem to connect those selected settlements with the shortest 

possible distance (i.e., least amount of transmission infrastructure). The model 

works by running these two algorithms, increasing the percentage of people 

connected from 1 percent to 100 percent. As with Deichmann et al. (2011), this 

approach generates the cost for connecting any additional settlement (or the 

marginal cost for grid expansion). This marginal cost is compared with a cost per 

settlement of connecting each settlement using distributed generation sources for 

which, again, costs are estimated. In this instance, however, transmission costs 

are ignored.  

The model then compares the 100 percent grid-connected result with the 

distributed generation costs and removes grid connections for every case in 

which distributed generation costs are less than the marginal costs of grid 

connection. The model is thus left with an approximation of an optimal network, 

connecting only those settlements in which the marginal cost of connecting to the 
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grid is less than distributed generation costs. From this calculation, the model 

derives an estimate of the split between on- and off-grid technologies.  

The results show that, following a least-cost approach, distributed generation 

technologies would supply electricity to more than 50 percent of the population in 

11 countries (Afghanistan, Central African Republic, Chad, Equatorial Guinea, 

Eritrea, Guinea-Bissau, Mali, Niger, Sierra Leone, Somalia, and Sudan). 

Furthermore, they identify 13 countries for which more than 90 percent of the 

population nodes can be electrified using distributed generation sources following 

a least-cost approach (Afghanistan, Central African Republic, Chad, Equatorial 

Guinea, Guinea-Bissau, Guyana, Mali, Mauritania, Mongolia, Niger, Sierra 

Leone, Somalia, and Sudan).  

Despite the computational elegance of this model, its results are undermined by 

a number of factors. First, as mentioned, it ignores any existing grid 

infrastructure. Since other models show this existing infrastructure to be a major 

determinant of technology allocation, this is clearly a significant shortcoming. 

Second, demand is central to the model because it drives the cost of generation 

(entirely in the case of off-grid and partially in the case of on-grid). The model 

derives demand assuming the average demand of currently connected 

households. In cases where data are lacking, the authors estimate demand using 

regional averages. Both of these estimates are likely to overestimate demand 

because connected households are likely to use more energy and regions with 

data are likely to have more connected customers. Furthermore, the numbers 

used for this calculation seem troubling. Current demand is estimated by taking 

the total demand in the country and dividing it by the country’s current rate of 

electrification, multiplied by the total population (data are from the IEA). The 

model says nothing about how domestic (as opposed to industrial) demand is 

estimated from this data. Reading the results of the analysis raises significant 

concerns that average domestic demand has been estimated using consumption 

figures that include industrial demand. For example, countries like Namibia 

(8,719 kWh per capita) and Guinea (10,321 kWh per capita) have extremely high 

demand (exceeding US per capita demand, according the US Energy Information 

Administration), thanks to their small populations and abundance of extractive 

industries. Indeed, the per capita numbers supplied for the United States by 

Levin and Thomas (2012) (12,365 kWh per capita) are equal to the household 

consumption provided by the US Energy Information Administration (10,666 kWh 

per household), suggesting that total consumption has been used and that 

industrial demand has been included in the model. This approach wildly 

overstates household demand. The authors were contacted about this decision 

but provided no response.  

More usefully, Levin and Thomas (2012) also undertake their analysis 

considering a variety of levels of energy consumption, including 50, 100, 250, 

500, 1,000, 2,500, 5,000, and 10, 000 (all kWh per capita per year). Because 
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these scenarios are more useful than assuming the high levels of demand 

mentioned above, a quick mapping of a selection of these findings appears in 

Figure A7. Clearly low demand drives a greater allocation of distributed 

generation, with population density (or concentrations in the case of North Africa 

and the Middle East) being the primary driver of technology allocations. The 

limitations of the model—in that it assumes no existing grid—are clear by the way 

it characterizes countries with 100 percent grid access as having high 

percentages of off-grid access at low levels of demand. As a result, this model is 

really of value for indicating technology allocations only in countries with very 

limited grid extent and low levels of demand. Although these conditions apply to 

much of sub-Saharan Africa, grid extent varies significantly within this region, and 

thus results should be read with caution.  

Figure A7. Results from Levin and Thomas (2012): Proportion of the 

population connected by distributed generation at selected levels of 

demand 

 

Source: Visualization derived from data published in Levin and Thomas (2012). 

 

Notable in these findings is the relatively large role for distributed generation, 

especially considering that the findings likely overstate the role for the grid. In 
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addition, this analysis highlights the variable costs and input prices for the model. 

For transmission networks, for example, the paper points out that estimates 

range from $50,000 to $500,000 per kilometer. The model uses a cost for 

transmission infrastructure of $200,000 per kilometer. Similarly, the costs of 

supply from the grid are noted to vary significantly across countries, as are prices 

for distributed generation technologies. Despite talking about these variable 

costs, the paper does not make clear (as far as this reviewer can tell55) what cost 

is used for centralized generation or for distributed generation.  

 

Van Ruijven, Schers, and van Vuuren (2012) undertakes an assessment of 

least-cost electrification technologies for Brazil, India, Indonesia, South Africa, 

and Eastern Africa (though the exact countries included in this last category are 

not stated).56 The model starts by assessing the cost of electrifying 95 percent of 

the population in all countries. The model is built on top of a grid of 0.5° × 0.5° 

cells, using data on population density and inhabited areas (the area within each 

cell that is considered inhabited). Correspondence with the paper’s authors 

revealed that the location of existing grid infrastructure was taken from 

OpenStreetMap’s infrastructure map. The location of currently connected 

households was then derived based on the national electrification rate and 

population density maps, assuming all existing connections occur via that grid. 

Based on this information, each cell was determined to be either electrified or not 

(A. Dagnachew, personal communication, August 31, 2018).  

The model proceeds by connecting cells in order of increasing levelized cost. 

This process involves first determining the demand for the cell, based on an 

assessment of population and a predetermined level of household demand (the 

model runs scenarios for two levels of demand: 65 kWh per household per year 

and 420 kWh per household per year). The total demand in each cell determines 

the transmission requirements for each cell, as well as the requirement for the 

low-voltage networks. These networks are limited by either their capacity (in 

densely populated areas) or their length (in sparsely populated areas). Based on 

the length of the MV network and the number of households, the authors derive 

the length of the LV network. MV lines are served by HV lines, with two cells 

served by a single HV line, unless demand from these cells exceeds the capacity 

of that HV line. Transformer needs are estimated based on the number of 

junctures between high- and low-voltage lines. Finally, for each household 

additional charges are put in place to cover wiring and connection costs. As with 

                                                
55 The corresponding author on the piece was contacted about the numbers used in the model but did not respond.  

56 This study also includes the generation of an econometric model looking at the drivers of electrification globally. The authors’ 

work shows that electrification in Africa takes place at higher levels of economic development (measured in terms of GDP 

per capita) than it does in Asia and Latin America. This work is not discussed in more detail here as it is not relevant to the 

content of this review. 
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other models, Van Ruijven, Schers, and van Vuuren (2012) considers only the 

cost of building new infrastructure, not of upgrading the existing grid.  

Based on these calculations, the model looks at the cost of connecting an 

increasingly large proportion of the rural population. Since the model starts by 

connecting areas with the lowest levelized cost, as the share of the population 

that is electrified increases, the costs of electrification increase as well, reaching 

very high costs in some instances: $12,000 per household in the cases of Brazil 

and South Africa.  

The model then seeks to assess what percentage of these households could be 

electrified by distributed renewables by looking at where the cost of distributed 

renewables drops below the cost of grid connections. To assess this, the model 

first adds $0.05 per kWh to existing grid costs to account for generation costs. In 

terms of distributed technology, it compares mini-grids and stand-alone PV. For 

mini-grids, the costs of wiring and distribution are the same as for the grid, with a 

generating cost added of $0.14–0.24 per kWh for local wind or diesel. For stand-

alone PV, the household wiring costs are the same as for the grid, with 

generation costs set at between $0.35 and $1.2 per kWh.57 The model does not 

consider the availability of wind resources or the increased cost of diesel as a 

result of distance to the nearest town. Nor does the report consider the point at 

which population pressure would make mini-grids competitive with stand-alone 

PV; instead it simply considers published levelized cost for mini-grids. 

The model is run comparing scenarios assuming high and low investment 

costs,58 and high (420 kWh per household per year) and low (65 kWh per 

household per year) levels of demand. The results show large variation across 

countries and scenarios (Figure A8). Where wind and diesel mini-grids have low 

generating costs, and where demand is low and infrastructure costs are high, the 

role for distributed renewables is thought to be extremely high. One notable 

finding is that assumptions about investment costs seem to matter more than 

assumptions about demand in driving the proportion of the population for whom 

distributed generation is cost competitive. This is an alarming finding given the 

large variance in investment costs for grid infrastructure that exist across the 

literature.  

                                                
57 This case illustrates the problems with how inputs are amassed for these models. Van Ruijven, Schers, and van Vuuren 

(2012) cite page 106 of a 2007 ESMAP report for these numbers. Consulting that report, however, reveals that it has only 

68 pages. Personal communication with the authors identified the correct reference for wind and diesel prices, but the 

authors acknowledged that they were unable to identify the source for the PV costs used in the model (J. Schers, personal 

communication, August 28, 2018).  

58 High costs are as follows: HV lines ($78,000), MV lines ($9,000), LV lines ($5,000), metering and wiring ($250). Low costs 

are as follows: HV lines ($28,200), MV lines ($5,000), LV lines ($3,500), metering and wiring ($100) 



 

Achieving Universal Electricity Access at the Lowest Cost 92 

Figure A8. Results from Van Ruijven, Schers, and van Vuuren (2012) 

 

Source: Visualization derived from data in Van Ruijven, Schers, and van Vuuren (2012). 

Note: Blue dots indicate high generation prices, and red dots indicate low generation prices.
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Dagnachew et al. (2017) builds on the model developed by Van Ruijven, 

Schers, and van Vuuren (2012). They update the model to consider rural and 

urban electrification as well as a host of distributed generation technologies, 

including both stand-alone (PV and diesel) and mini-grids (PV, diesel, wind, 

micro-hydro, and hybrid). This time, however, the model is applied only to sub-

Saharan Africa, and it assesses technology allocation to 2030 considering a 

number of scenarios that vary in terms of both level of household demand and 

target electrification rate. The model is notable for invoking multiple time steps 

from 2010 to 2030, updating technology allocations every year (A. Dagnachew, 

personal communication, August 31, 2018). 

The model is again built on top of a 0.5° × 0.5°  grid, using the OpenStreetMap 

infrastructure database to determine the location of the existing grid and the 

LandScan data set to locate population density for each cell in the grid. To 

determine the location of currently connected customers, the model uses the 

same approach as Mentis et al. (2015, 2016) in drawing a corridor around the 

existing grid and expanding that corridor until it covers the proportion of the 

population equaling the electrification rate.  

The authors do not describe the order of calculations undertaken by the model 

but rather the decision tree by which technologies are assigned. They describe 

three steps: First, grid generation costs are compared with distributed generation 

costs, and the cheapest cost is assigned to the cell. Second, in an approach 

similar to that of the Network Planner model, the distance between the cell and 

the grid is calculated, and a cost for extending the grid to that cell is calculated 

based on an assumption about grid extension costs (provided in $/km). If the 

generation cost plus the extension cost remains below the difference in 

generation cost between the grid and the distributed technologies (for a set level 

of demand), then the grid is selected as the technology to connect the cell; 

otherwise the cell is connected by distributed generation. Third, the model has to 

select between stand-alone distributed generation and mini-grids. This decision 

is made based on standard numbers for mini-grid calculations undertaken 

elsewhere. The decision involves checking whether the cell meets threshold 

levels for at least two of the following three conditions: population density of the 

cell (derived from Fuso Nerini et al. 2016; see below for a discussion), electricity 

demand per household, and the distance of the cell from the existing grid. The 

last of these is intended to account for the fact that subsequent grid expansion 

can jeopardize the financial viability of mini-grids (see Morrissey 2017 for more 

details on this process).  

Because the model incorporates multiple time steps, it can consider the impact of 

declining renewable prices through to 2030 by applying a learning rate derived 

from Stehfest et al. (2014). This results in per-kilowatt-hour prices for distributed 

generation as low as $0.09 for solar PV mini-grid, $0.11 for wind, $0.14 for mini-

hydro, $0.16 for PV-diesel hybrids, and $0.15 for wind-diesel hybrids by 2030. 
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For mini-grids the model does not consider demand profiles but simply sizes the 

system to meet peak demand, with a battery capacity to provide autonomy for 

one day at 50 percent discharge. Hydro potential was evaluated for every 10 km 

on rivers with a discharge of less than 50 cubic meters per second. Potential 

reservoir capacity was determined by Hydro SHEDS topographic data with costs 

derived from equations developed for US and Norwegian hydropower tenders 

(Dagnachew et al. 2017).  

The model first considers a baseline scenario, which is the expected rate of 

electrification and average demand achieved in sub-Saharan Africa if no new 

policies are implemented to drive energy access. This assessment is based on 

the econometric model developed by Van Ruijven, Schers, and van Vuuren 

(2012), mentioned briefly above. Under that model the electrification rate is a little 

over 60 percent (total population in 2030 is about 1.3 billion) with average 

demand at between tiers 3 and 4 in the World Bank Multi-Tier Framework for 

measuring energy access. Then the model considers the universal access 

scenarios, which vary by demand, to consider the demand from the baseline 

scenario and tiers 1–5 of the Multi-Tier Framework (the model uses the lowest 

demand level for each tier). Model results, shown in Figure A9, were obtained 

from personal communication with Anteneh Dagnachew (September 1, 2018).59  

                                                
59 Dagnachew (personal communication, September 1, 2018) provides only graphical representations of the results, not 

tabulated data, and the images published there show the technology shares for all connected populations, including 

already connected populations. In contrast, Figure A9 refers specifically to the newly connected population. The tabulated 

data that inform this figure are from personal communication with Dagnachew (September 1, 2018). 
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Figure A9. Results from Dagnachew et al. (2017): Percentage of newly 

connected population by technology, across multiple demand scenarios 

 

Source: Visualization derived from personal communication with Anteneh Dagnachew (September 1, 2018). 

 

The model findings show that grid connections come to dominate the proportion 

of newly connected households at all demand levels above tier 1. The proportion 

of investment costs follows this same pattern. This finding is notable because (1) 

in other models the grid dominates only at tier 3 and higher, (2) this pattern 

occurs even though the model achieves low LCOE numbers for distributed 

generation by 2030 based on the application of a learning rate, and (3) mini-grids 

play a small role in all scenarios. 

Finally, the model undertakes sensitivity testing, varying the costs of diesel and 

grid investment. Varying the diesel price has little impact (though the range used 

is on the low side—$0.5–$0.8 per liter—whereas many models assume a diesel 

price of $1 a liter before transport costs). Varying grid investment costs has a 

significant impact, though this impact is mitigated by the level of demand in each 

case. At low levels of demand, high grid costs result in an additional 110 million 

people gaining access through distributed systems. At high levels of demand, the 

number drops to 20 million (see Table 2 for grid costs).  

The model has several limitations. It treats every cell individually and therefore 

cannot appreciate that technologies might be viable owing to scale achieved 

across cells. In addition, it treats demand as constant and fails to consider that 
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demand would vary across households over time (increasing with time 

connected) both within and across rural and urban areas.  

Bertheau, Cader, and Blechinger (2016) considers the electrification pathway 

in Nigeria. The model draws upon population data sets augmented with polling 

places and schools (both of which are thought to have populations around them). 

Based on these data, the country is broken down into spatially defined clusters of 

potential consumers. Data on the extent of the grid in Nigeria are too poor to 

include in the model, and thus the electrification status of each cluster is 

determined using nighttime imagery augmented with data on the electrification 

status of schools; all areas with light or with an electrified school are considered 

electrified. All areas within 20 km of any electrified cluster are assumed to be 

serviced most cheaply with a grid connection. Outside of this buffer zone, all 

clusters with populations of fewer than 1,000 people are assumed to receive 

stand-alone systems, while all the remaining clusters are electrified using mini-

grids. Results appear in Table A11. 

Table A11. Results from Bertheau, Cader, and Blechinger (2016) 

Indicator Grid Mini-grid Stand-alone PV 

Number of people connected 

to technology 

57.1 million 12.8 million 2.8 million 

% of connections 78.5 17.6 3.9 

 

As expected, in more remote and sparsely populated states, distributed delivery 

systems play a larger role. The authors conclude that although the grid 

dominates as the cheapest form for delivering electricity, distributed systems still 

play a significant role.  

Bertheau et al. (2017) models the least-cost electrification pathway for all of sub-

Saharan Africa. The model first identifies all households that lack electricity by 

triangulating assessments of nighttime light emissions and population density 

with IEA numbers on electrification rates. It then draws a 25-km buffer around the 

existing grid infrastructure and assumes that everyone within this buffer is 

connected most cheaply to the grid. Data on the location of grid infrastructure 

were based principally on the AfDB and UN DESA data sets on transmission 

infrastructure. In countries where data were missing, the authors requested 

information directly from country ministries and agencies; nonetheless, country 

data were still incomplete. For those outside of the grid buffer, the model sets a 

population density threshold for receiving either mini-grid systems (more than 

400 people per km2) or stand-alone systems (fewer than 400 people per km2). It 

sets this threshold based on other literature, citing Fuso Nerini et al. (2016). The 

authors test the model so that areas within the 25-km zone buffering the grid 

must also meet the 400-people-per-km2 threshold to receive a grid connection. 
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They run two instances of the model: one that focuses only on the existing grid 

and one that considers any existing planned grid extensions, usually intended to 

connect mines and new generating plants. The results show a large role for 

stand-alone systems (at lowest 30 percent) and a relatively small role for mini-

grids (Figure A10), which the authors point out contradicts the IEA (2017) 

analysis. 

Figure A10. Results from Bertheau et al. (2017) 

Source: Visualization derived from data published in Bertheau et al. (2017). 

 

The model then considers the impacts of replacing the assumption that everyone 

within a 25-km buffer of the grid gets connected to the grid with a requirement 

that, even within the 25-km buffer, population density must exceed 400 people 

per km2 in order to receive a grid connection. Doing so changes the outcomes of 

the model quite dramatically (see Figure A10).  

Bertheau et al. (2017) undertakes sensitivity tests against a baseline model 

(using the existing grid), changing the size of the buffer zone (to 10 km and 50 

km) and the threshold for mini-grid/grid connection and stand-alone system (to 

100 people per km2). While changing these parameters changes the outcomes of 

the model, the overall picture remains the same, suggesting a relatively small 

role for mini-grids. The most sensitive parameter is the population threshold for 

allocating mini-grids: lowering it to 100 people per km2, results in a shift away 

from stand-alone (–24.6 percent) toward the grid (+15.6 percent) and mini-grids 
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(+9 percent). Such a sensitivity test effectively tests whether demand might have 

been underestimated.  

Sahai (2013) models the least-cost technology allocation for achieving 100 

percent electricity access on Flores Island, Indonesia, which has a population of 

more than 1 million people and an electrification rate of 40 percent (170,000 

electricity connections). The model compares grid connections, solar mini-grids, 

and stand-alone solar home systems. It begins by using census data to 

determine the number of people in unelectrified households in each village 

administration (desa). It then uses geospatial data on the existing grid to 

determine which areas of the desa are actually inhabited (linking population and 

land-use data). By consulting geospatial data on MV power infrastructure, the 

model identifies the location of unconnected households and their distance to the 

nearest grid source.  

The model notes that results are essentially driven by the number of households 

(i.e., population density). For settlements of fewer than 10 households, solar 

home systems are cheapest, whereas for settlements of more than 1,000 

households, grid connections are cheapest. Mini-grids work in settlements of 11–

50 households and are viable for 20 percent of settlements of between 50–250 

households. Specific results appear in Table A12.  

Table A12. Results from Sahai (2013) 

Indicator Grid Solar mini-grid Solar home system 

Number of connections  166,000 84,400 2,650 

% of connections 65.60 33.35 1.05 

Cost ($ millions) 168 94 5 

% of cost 62.92 35.21 1.87 

Cost/connection ($) 1,012.05 1,113.74 1,886.79 

 

Zeyringer et al. (2015) models the least-cost technology allocation for 

electrifying Kenya, comparing grid extension with stand-alone PV.60 The authors 

undertake an extensive effort to estimate latent demand for electricity, building an 

econometric model to do so. This model is based on an assessment of 

household demand among existing households, controlling for factors such as 

income, age and education of the household head, size, and urban or rural 

designation. The authors consider only households within 100 km of the grid, 

ignoring data from Nairobi and Mombasa, which are likely to be too different to 

be useful. Based on this analysis, they estimate demand at between 164 and 

1,880 kWh per household per year.  

                                                
60 The authors made this limited assessment because they lacked data on regional diesel prices and on wind and micro-hydro 

generation.  
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They then build the electrification model on top of a grid of cell, each 2,000 km2 in 

size. The model operates by determining the cost of connecting each cell based 

on an assessment of demand. The cost of grid generation is set at $0.13 per 

kWh, transmission cost is set at $157,470 per km (based on consultations with 

the Kenyan Power and Lighting Company), and distribution charges are 

determined based on a rate of $0.1027 per kWh, where a 1 percent increase in 

population leads to a 6 percent increase in distribution costs. For stand-alone PV 

systems, costs varied by cell based on solar radiation availability, and the 

average cost is estimated at $0.56 per kWh.61 The publication provides no 

information on how batteries are sized or on the expected lifetime of the solar 

components. The model does not make clear how grid construction is optimized 

to minimize the distance between cells. Furthermore, the model does not make 

clear the source used for determining current grid location. The author was 

contacted about these issues, but no information could obtained as the author 

was on maternity leave (S. Pachuri, personal communication, August 29, 2018).  

The model considers a 2005/2006 baseline scenario (which essentially uses grid, 

PV, and battery prices from that period) and a 2020 scenario. For the 2020 

scenario, prices for PV are projected based on estimates from the IEA and 

IRENA. Estimates for battery prices are hard to come by and thus left the same 

as in the baseline scenario. Grid prices are assumed to stabilize at $0.17 per 

kWh in 2018, based on projections from the Kenyan Ministry of Energy. 

The results of the analysis show that in 2005/2006, stand-alone PV is the 

cheapest option for 80 percent of grid cells in Kenya (Figure A11). However, this 

large share accounts for only 22 percent of households because these cells are 

sparsely populated. For the 2020 scenario, changes in the inputs (lower PV 

costs; increased grid generation costs; and increased demand due to increased 

income, education, and population growth) cancel each other out so the 

proportions remain almost the same. If, however, only electricity demand is 

increased and all other parameters remain constant, 6 more cells receive a grid 

connection so that only 17 percent of households and 78 percent of cells receive 

stand-alone PV.  

  

                                                
61 The authors do not provide this figure, so it has been calculated here. This is based on the following original data: solar 

installation costs of $250/m2, battery costs of $4.17/W, additional component costs of $100/m2, solar efficiency of 12 

percent, average solar irradiation of 2,007 kWh/m2, and a discount rate of 6 percent. Although not stated in the work, this 

analysis assumes that each household requires a 60 watt battery. Batteries are replaced every 4 years while the rest of the 

solar components last 20 years.  
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Figure A11. Results from Zeyringer et al. (2015)

 

Source: Visualization derived from data published in Zeyringer et al. (2015). 

 

Zeyringer et al. (2015) further undertakes sensitivity analysis in which the authors 

increase and decrease the following factors by 50 percent: solar efficiency, solar 

costs, demand, grid extension costs, and grid generation costs. They then 

consider the impact on overall generation. From this analysis, it is clear that the 

greatest sensitivity is to decreasing solar costs, which drives PV generation to 45 

percent, and increasing solar efficiency, which pushes PV generation to 27 

percent (Figure A12). Overall, however, the results are notable for confirming the 

relatively dominant role of the grid in electrifying Kenya.  
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Figure A12. Sensitivity analysis from Zeyringer et al. (2015) 

 

Note: For all scenarios, increases and decreases are by 50 percent. 

Source: Visualization derived from data published in Zeyringer et al. (2015). 

 

The model’s limitations include its limited grid resolution (2,000 km2) and its 

failure to consider any planned grid development or other distributed generation 

sources (hydropower, biomass, and wind). Furthermore, it fails to consider how 

access affects demand and how demand might change over time.  

Ellman (2015) models the least-cost allocation of technologies to achieve 

universal energy access in the Vaishali district of Bihar, India. Ellman (2015) 

uses the Reference Electrification Model, developed by MIT, to consider the 

allocation of PV, diesel, and grid connections. The model, like others used here, 

is a single-time-step (or overnight build) model. It is computationally intense but 

provides a great deal of detail. For this reason, only the relatively small area of 

Vaishali (population: 3.5 million) is modeled. The area has an electrification rate 

of 16 percent and a very high population density of 1,700 people per km2—

despite being 93 percent rural.62 

The location of existing grid infrastructure is derived from a map that describes all 

of the district’s infrastructure,63 augmented with consultations with the chief 

                                                
62 This is more than three times the population density of New Jersey, the most densely populated US state. 

63 The identification of this map is what drove the choice of field site.  
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engineer responsible for the grid in this area. The model attempts to identify the 

unelectrified structures, creating a digitized map of every structure that will be 

electrified (street lights, houses, hospitals, etc.) in the area, based on Google 

Images photos. This process is then augmented with census data. Unelectrified 

households are identified by looking at the location of MV power lines and 

assuming that the electrified population resides within a corridor surrounding that 

infrastructure. Demand data are based on the assumption that newly connected 

households will consume like average rural households—though the author 

notes that if reliability is improved, demand would likely increase. Demand data is 

estimated from the current demand on medium-voltage nodes. The model 

increases demand over time and accounts for variable peak demand across 

households.  

The model uses a standard diesel price of $1 per liter. Battery costs, labor costs, 

and parts for PV systems are all derived from locally relevant studies and 

sources. The model assumes three-phase power for the grid. Based on 

consultations with the utility, the author determines the cost of supply as $0.1 per 

kWh for existing customers. To account for the increased cost of servicing new 

customers, Ellman sets the cost at $0.2 per kWh.  

A principal difference between this model and others is the effort to cluster 

customers into potential mini-grids. This clustering occurs because the model 

uses individual households rather than simply selecting a technology for an entire 

population node or cell. The exact method used to achieve this cannot be 

discussed in its entirety here, but it drives significant differences in results (see 

below).  

Also notable is that the model costs non-serviced demand. It achieves this by 

accounting for both critical and noncritical demand and then optimizing systems 

to allow for not meeting noncritical demand. This approach allows for distributed 

systems to be optimized and means that the cost of the current grid unreliability 

is accounted for. The value of unmet demand is set at between $1.5 per kWh 

and $2 per kWh. To assess the grid’s current capacity to meet demand, current 

grid reliability was estimated from logbooks stored in the transformers. The 

author notes that this information was of limited accuracy because (1) the study 

looked at MV lines whereas LV lines could have worse performance, (2) the 

logbooks ignore seasonal changes, and (3) the study looked at relatively 

centralized transformers but more remote lines could have worse service.  

The model then works out the cost of meeting demand for every customer with a 

stand-alone solar system. It undertakes the clustering process to check the 

potential for mini-grid formation and reallocates structures to a mini-grid in every 

case where a mini-grid is cheaper. The model looks at the cost of connecting 

mini-grid clusters to the grid, accounting for generation and transmission costs. 
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The author notes that this model is imperfect because it focuses on extending 

MV lines and does not account for extending existing HV or LV lines. 

The model produces a baseline result in which: i) the number of customers 

matches the data on the current population in Vaishali, ii) experiences 1% 

demand growth annually, iii) assumes current grid reliability and iv) compares 

gird extension and microgrid development. The models repeats the baseline to 

check robustness of results. The model additionally runs the following scenarios: 

perfect grid reliability, 16 percent annual increase in demand, and 13 percent 

annual customer growth (driven by more buildings) on top of the existing 

population. These scenarios are tested across two clustering approaches.  

Figure A13. Results from Ellman (2015) 

 

Source: Visualization derived from data published in Ellman (2015). 

 

Under the first cluster method, the baseline model is run twice to ensure it gives 

similar outputs (Figure A13). The baseline and two demand growth scenarios are 

tested across two clustering approaches. Three notable findings stand out from 

the results. First, mini-grids play a substantial role in almost all cases. Large PV-

diesel mini-grids are able to get prices down to about $0.3 per kWh. In addition, 

although not shown in the figure, the paper reports that small PV-battery systems 

play an important role. Second, the grid’s lack of competitiveness is due to its 
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unreliability, which, when costed as it is in this model, limits grid expansion. 

When, however, the grid is assumed to be reliable (though the costs of achieving 

this are not included), it is the cheapest option for 99 percent of structures. 

Finally, as mentioned earlier, the clustering approach matters enormously. This 

difference in results is driven by the fact that one clustering approach places 

households in lots of small clusters that lack the scale to justify grid connection. 

The other approach creates large clusters and therefore affords greater 

opportunities for realizing the scales necessary to warrant the grid. No other 

model described here even engages with this issue, yet it clearly has significant 

impacts. The extent to which these results are applicable only to densely 

populated areas is unclear and deserves future study.  

Finally, this appendix includes a summary of work by Fuso Nerini et al. (2016), 

which informs the methods and estimates used in various models mentioned 

here (Mentis et al. 2017, 2016, 2015; Moksnes et al. 2017; Dagnachew et al. 

2017; Bertheau et al. 2017). Fuso Nerini et al. (2016) do not build an LCEM for 

an actual location but rather calculate the LCOE for a number of different 

technologies (grid, diesel generator mini-grid, PV mini-grid, hydro mini-grid, 

biogas mini-grid, PV stand-alone, diesel generator stand-alone) as well as the 

total cost per household of meeting energy needs. They do this for different 

levels of demand and different levels of population density located at different 

distances from the grid.  

The model uses broad categories of resource availability and fuel cost: Solar 

radiation is high (2,000–2,500 kWh per square meter per year) or medium 

(1500–2000 kWh per square meter per year); wind capacity factors span 20 to 40 

percent; mini-hydro either is available within 10 km from the demand center or is 

not; diesel costs are assumed at values of between $0.5 and $1 per liter for mini-

grids and between $1 and $2 per liter for stand-alone generators. The model 

considers electricity prices ranging from $0.05 per kWh to $0.4 per kWh. It is 

worth noting up front that capital costs in Fuso Nerini et al. (2016) do not capture 

the steep cost declines in renewable components that have taken place since the 

article was published (F. Fuso Nerini, personal communication, March 13, 2018). 

The model’s findings are thus likely to be conservative in terms of the role for 

distributed renewable technologies. The work’s own sensitivity analysis (which 

decreased renewable component costs by 20 percent) showed that this would 

likely result in a larger role for distributed PV compared with distributed diesel. 

The overall findings are as follows: 

- For tier 1 energy access (22 kWh per household per year), stand-alone 

systems provide the cheapest electricity across all population densities 

and at any distance from the grid.  

- For tier 2 energy access (224 kWh per household per year):  
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o At low population densities (100 households per km2), mini-grids 

provide the cheapest energy access regardless of distance from 

the grid.  

o At high population densities (500 households per km2): 

▪ Households within 10 km of the grid are served most 

cheaply by the grid, unless they have access to micro-

hydro.  

▪ At 20 km from the grid, grid connections and stand-alone 

systems are largely comparable. 

▪ Grid connections are not competitive at 30 km from the 

grid.  

- For tier 3 energy access (695 kWh per household per year): 

o At low population densities, micro-hydro is cheapest; otherwise 

grid connections and mini-grids are comparable as the cheapest 

energy source.  

o At high population densities, micro-hydro is cheapest; otherwise 

the grid is cheapest up to 20 km from the grid. At 30 km from the 

grid, mini-grids become competitive.  

- For tier 4 and 5 energy access (greater than 1,800 kWh per household 

per year), micro-hydro is cheapest wherever it is available. Otherwise, the 

grid is cheaper up to 30 km from the existing grid.  

Fuso Nerini et al. (2016) also apply their general model to the specific cases of 

Ethiopia and Nigeria. Because these results are discussed by Mentis et al. (2015, 

2016), they are not repeated here.  
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Oxfam is a global movement of people working together to end the injustice of 

poverty. With 70 years of experience in more than 90 countries, Oxfam takes on 

the big issues that keep people poor: inequality, discrimination, and unequal 

access to resources including food, water, and land. We help people save lives in 

disasters, build stronger futures for themselves, and hold the powerful 

accountable. Join us. www.oxfamamerica.org. 
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